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In this paper, we have presented a unified framework for generat-
ing planar four-bar motions for a combination of poses and prac-
tical geometric constraints and its implementation in MotionGen
app for Apple’s iOS and Google’s Android platforms. The frame-
work is based on a unified type- and dimensional-synthesis algo-
rithm for planar four-bar linkages for the motion-generation
problem. Simplicity, high-utility, and wide-spread adoption of pla-
nar four-bar linkages have made them one of the most studied
topics in kinematics leading to development of algorithms and the-
ories that deal with path, function, and motion generation prob-
lems. Yet to date, there have been no attempts to develop efficient
computational algorithms amenable to real-time computation of
both type and dimensions of planar four-bar mechanisms for a
given motion. MotionGen solves this problem in an intuitive fash-
ion while providing high-level, rich options to enforce practical
constraints. It is done effectively by extracting the geometric con-
straints of a given motion to provide the best dyad types as well as
dimensions of a total of up to six four-bar linkages. The unified
framework also admits a plurality of practical geometric con-
straints, such as imposition of fixed and moving pivot and
line locations along with mixed exact and approximate synthesis
scenarios. [DOI: 10.1115/1.4035899]

1 Introduction

Planar four-bar linkages are the most commonly used linkages
in machines due to their simplicity, practicality, and performance
characteristic that fit with a large number of path, function, and
motion generation problems. In the last 50 years, numerous
researchers have developed theories and algorithms for their syn-
thesis and simulation leading to a large body of work which are
now well-covered in text books by Sandor and Erdman [1], Uicker
et al. [2], Norton [3], McCarthy and Soh [4], Hunt [5], Hartenberg
and Denavit [6], Suh and Radcliffe [7], and several others.

Generation of mechanism design concepts is a critical step in
the machine design process. This paper is concerned with the
motion-generation problem, wherein a set of discrete poses (trans-
lation and orientation) are specified and the objective is to find
both the type and dimensions of planar four-bar linkages. Here,
type refers to the joint types and their pattern of interconnection.
The current state-of-the-art in mechanism design follows a two-
step approach, where machine designers typically use their past
kinematic experience to first select a type and then use standard
mathematical formulations to compute the dimensions of a link-
age. While this two-step paradigm for mechanism design leads to
better mechanism classification and enumeration [8,9], it makes
type synthesis a very challenging task, even for those who have
been well trained in mechanism science. Erdman and Sandor [10]
summarized the importance and challenges of the type-synthesis
problem. There have been several attempts to solve the combined
problem of type synthesis and dimensional synthesis through the
use of genetic algorithm [11,12], topology optimization [13,14],
as well as a uniform polynomial system [15]. However, they have
been carried out for very restricted applications with very limited
number of mechanism types. More significantly, these approaches
do not reduce the complexity of the type-synthesis problem.
Researchers in artificial intelligence (AI) community have also
sought with very limited success to bridge the gap between type
and dimensional syntheses and developed what is known as quali-
tative kinematics [16] in the context of qualitative spatial
reasoning.

Recently, we have shown that the ability to decompose a design
problem into type and dimensional syntheses is actually data
dependent and the type-synthesis problem may not be solved
without engaging in dimensional synthesis simultaneously. This
necessitates a data- or task-driven paradigm for simultaneous type
and dimensional synthesis, see Ge et al. [17,18]. The key is to
establish a computational approach for transforming the problem
of selecting a mechanism type into that which is directly comput-
able from the specified task, i.e., the quantitative information
about a specified task drives the mechanism design process and is
used to determine both the type and dimensions of a desired
mechanism. In this paper, we present a unified framework, which
not only incorporates the fixed positional constraints but also
allows specifying practical geometric constraints, such as location
of fixed and moving pivots of linkages at various locations or
along certain lines, relaxing positional or geometric constraints to
enable mixed exact and approximate synthesis without resorting
to special cases. This framework is implemented in MotionGen.

MotionGen [19]2 is an attempt to make the results of this work
widely available to machine designers, practitioners, kinemati-
cians, and students in the form of an accessible mobile app. The
current pedagogical research literature indicates that the mobile
technologies in education are serving as educational sandbox and
removing the artificial boundaries between learning and playing
while providing more time for hands-on activities that enhance
student’s cognition [20,21]. MotionGen is available for download
for free for two industry-dominant platforms, viz., Apple iOS [22]
and Google Android [23]. Mechanism synthesis systems coming
from academia (KINSYN III [24], LINCAGES [25,26], Sphinxpc
[27], Synthetica [28], Wu et al. [29], and Purwar and Gupta [30])
have mostly focused on dimensional synthesis. Although there are
a few desktop software systems available for planar linkages that
provide extensive simulation and analysis capabilities [31–35],
none provides true synthesis capabilities that would enable users
to engage in mechanism design innovation at a fundamental level.
On the other hand, the MotionGen can compute both the type and
dimensions of the linkages. Autodesk’s Force Effect Motion [36]
was one of the few mobile apps that provided simulation capabil-
ities for N-bar linkages, however, sadly it is no longer available.
More recently Turkkan and Su [37] presented a MATLAB tool for

1Corresponding author.
Manuscript received October 17, 2016; final manuscript received January 13,

2017; published online March 9, 2017. Assoc. Editor: Venkat Krovi. 2http://www.motiongen.io

Journal of Mechanisms and Robotics APRIL 2017, Vol. 9 / 024504-1Copyright VC 2017 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanism
srobotics/article-pdf/9/2/024504/6256558/jm

r_009_02_024504.pdf by SU
N

Y At Stony Brook user on 13 January 2020

http://www.motiongen.io
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4035899&amp;domain=pdf&amp;date_stamp=2017-03-09


kinetostatic synthesis of compliant mechanisms, while Kinzel
et al. [38] proposed a geometric constraint programing approach
for mechanism synthesis in a host computer aided design environ-
ment. Lately, Disney Research, driven by a desire to physically
animate their cartoon characters and build mechanically func-
tional artifacts and robots for their entertainment parks, has
invested in developing intuitive and efficient Linkage Editing soft-
ware systems [39,40]. However, they have not made them avail-
able for public use. A detailed review of the state-of-the-art in
computer-aided mechanism design software systems can be found
in Chase et al. [41] and is summarized in Purwar et al. [42].

The rest of this paper is organized as follows: In Sec. 2, we
review our overall approach for extraction of geometric con-
straints from a given motion and present the concept of planar
kinematic mapping. Section 3 reviews a unified form of geometric
constraints of dyads, while Sec. 4 presents how additional geomet-
ric constraints on poses and pivots can be unified as well. In Sec.
5, we show how various constraints can be solved for by employ-
ing a two-step process wherein first given constraints are algebrai-
cally fitted and then kinematic constraints are applied to extract
the dyad type and dimensions. In Sec. 6, we present a few case
studies illustrating the efficiency and efficacy of our approach.

2 Approach

MotionGen synthesizes planar four-bar linkages by computing
appropriate planar RR, RP, and PR dyads and their dimensions for
a given motion, where R refers to a revolute and P refers to a pris-
matic joint. When two such dyads are assembled, the coupler
interpolates through the given poses either exactly or approxi-
mately while minimizing an algebraic fitting error. The algorithm
employed in MotionGen extracts the geometric constraints (circu-
lar, fixed-line, or line-tangent-to-a-circle) implicit in the motion of
an object and matches it with a corresponding mechanical dyad
type. Given an arbitrary motion, MotionGen can compute the
dyad types (RR, PR, and RP) that minimize the algebraic error of
fitting the geometric constraints of these dyads with the motion. In
the process of computing the types, the dimensions of the dyads
are also computed. Due to the degree of polynomial system cre-
ated in the solution, up to a total of six four-bar linkages can be
computed for a given motion.

MotionGen also lets users simulate planar four-bar linkages by
assembling the constraints of planar dyads on a grid- or image-
overlaid screen. This constraint-based simulation approach mir-
rors the synthesis approach and allows users to input simple geo-
metric features (circles and lines) for assembly and animation to
verify the motion and make interactive changes to the trajectories.

Now, we review the details of this approach in so far as neces-
sary to describe the algorithm behind MotionGen, see Ref. [17]
for details. The mathematical machinery in MotionGen is based
on use of planar quaternions for the representation of planar dis-
placement, kinematic mapping, and a unified algebraic form of
geometric constraints of dyads and other practical constraints
written using homogeneous coordinates.

2.1 Planar Kinematic Mapping. A planar displacement con-
sisting of a translation (d1, d2) and a rotation angle / from a mov-
ing frame M to a fixed frame F is represented by a planar
quaternion Z¼ (Z1, Z2, Z3, Z4) where (see Refs. [43] and 44] for
details)

Z1 ¼
1

2
d1 cos

/
2
þ d2 sin

/
2

� �
; Z2 ¼

1

2
�d1 sin

/
2
þ d2 cos

/
2

� �

Z3 ¼ sin
/
2
; Z4 ¼ cos

/
2

ð1Þ

The components (Z1, Z2, Z3, Z4) define a point in a projective
three-space called the image space of planar displacements [44].
Then, a planar displacement represented as a homogeneous

transformation of point x¼ (x1, x2, x3) or line l¼ (l1, l2, l3) from
M to F can be given by

X ¼ ½H�x; ½H� ¼
Z2

4 � Z2
3 �2Z3Z4 2ðZ1Z3 þ Z2Z4Þ

2Z3Z4 Z2
4 � Z2

3 2ðZ2Z3 � Z1Z4Þ
0 0 Z2

3 þ Z2
4

2
664

3
775
(2)

L¼ ½H �l; ½H � ¼
Z2

4 �Z2
3 �2Z3Z4 0

2Z3Z4 Z2
4 �Z2

3 0

2ðZ1Z3�Z2Z4Þ 2ðZ2Z3þZ1Z4Þ Z2
3 þZ2

4

2
64

3
75

(3)

where Z2
3 þ Z2

4 ¼ 1, and X¼ (X1, X2, X3) and L¼ (L1, L2, L3) are
the corresponding point and line coordinates in F.

3 A Unified Form of Geometric Constraints of Dyads

Mechanical dyads of types RR, PR, and RP in planar four-bar
linkages impose circle-, line-, or line-tangent-to-circle constraints
on the end-effector, respectively. We disregard PP dyads due to
their inability to effect a change in orientation. Using kinematic
mapping, these geometric constraints can be written in a unifying
algebraic form. Let a¼ (a1, a2, a0), where a0 6¼ 0, denote the
homogeneous coordinates of the center of a circle C in F. Then, a
point with homogeneous coordinates X¼ (X1, X2, X3) lies on C if

2a1X1 þ 2a2X2 þ a3X3 ¼ a0

X2
1 þ X2

2

X3

� �
(4)

The radius r of the circle is given by
r2 ¼ ða1=a0Þ2 þ ða2=a0Þ2 þ a3=a0. When a0¼ 0, Eq. (4) becomes
linear

L1X1 þ L2X2 þ L3X3 ¼ 0 (5)

which represents a line with homogeneous coordinates L¼ (2a1,
2a2, a3). Thus, Eq. (4) is a unified representation for both a circle
and a line, and therefore, could lead to a unified representation of
the constraints of RR and PR dyads.

For an RP dyad, a line with homogeneous coordinates L¼ (L1,
L2, L3) passes through a fixed point X¼ (X1, X2, X3). In other
words, they also satisfy Eq. (5).

Thus, we may conclude that all the three dyadal constraints can
be represented by Eq. (4) and that when a0¼ 0, the dyad has at
least one prismatic joint.

By substituting Eq. (2) into Eq. (4), we have shown in Ref. [45]
that the constraint manifold of an RR dyad is the following quad-
ric surface in the image space:

p1ðZ2
1 þ Z2

2Þ þ p2ðZ1Z3 � Z2Z4Þ þ p3ðZ2Z3 þ Z1Z4Þ
þ p4ðZ1Z3 þ Z2Z4Þ þ p5ðZ2Z3 � Z1Z4Þ þ p6Z3Z4

þ p7ðZ2
3 � Z2

4Þ þ p8ðZ2
3 þ Z2

4Þ ¼ 0 (6)

where the eight coefficients pi are not independent but must satisfy
two quadratic conditions

p1p6 þ p2p5 � p3p4 ¼ 0; 2p1p7 � p2p4 � p3p5 ¼ 0 (7)

This is because pi are related to the geometric parameters of the
dyad by

p1 ¼ �a0; p2 ¼ a0x p3 ¼ a0y; p4 ¼ a1; p5 ¼ a2

p6 ¼ �a1yþ a2x; p7 ¼ �ða1xþ a2yÞ=2

p8 ¼ ða3 � a0ðx2 þ y2ÞÞ=4

(8)

where (a0, a1, a2, a3) are the homogeneous coordinates of the con-
straint circle expressed in fixed reference frame, and (x, y) are the
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coordinates of the circle point expressed in moving reference
frame. For a PR dyad, we have a0¼ 0, and therefore,
p1¼ p2¼ p3¼ 0. Equations (6) and (7) are said to define the con-
straint manifold of RR and PR dyads.

By substituting Eq. (3) into Eq. (5), it is found that for RP dyad,
the constraint manifold has the same form as Eqs. (6) and (7),
however, we now have p1¼ p4¼ p5¼ 0. Thus, all the planar dyads
can be represented in the same form by Eqs. (6) and (7), and we
can determine the type of a planar dyad by looking at the zeros in
the coefficients pi (called signature of a dyad). This leads to a uni-
fied algorithm for simultaneous type and dimensional synthesis of
planar dyads. In addition, this formulation eliminates the need for
solving a large system of polynomial equations, which makes
linkage synthesis problem challenging even for dimensional syn-
thesis. In our approach, we first obtain the homogeneous coordi-
nates pi, determine the dyad type from the signature of coefficient
array pi, and then compute the dyad parameters using inverse rela-
tionships in Eq. (8).

4 A Unified Form of Additional Practical Geometric

Constraints

In this section, we show that apart from a set of positions, a plu-
rality of practical geometric constraints can also be specified,
which are all handled similarly in our unified framework without
increasing the polynomial complexity. Although adding additional
constraints may seem to shrink the design space for linkage syn-
thesis, it expands intuitive horizon of mechanism designer. The
additional constraints considered are specification of (1) addi-
tional pose constraint for mixed exact and approximate synthesis,
(2) fixed- or moving-pivot locations at given points, and (3) speci-
fication of fixed- or moving-pivot locations on given lines. This
framework derives it strength from the fact that any combinations
of these constraints can be specified simultaneously to enable
designers to realize their design goal. Thus, a problem may be
specified as n positional or pivot constraints, some of which may be
exact or approximate. Since, our algorithm computes dyads that
solve for these constraints, any combination of two dyads may be
assembled together to form many planar four-bar linkages.

4.1 Pose Constraint for Mixed Exact and Approximate
Positions. For more than five pose constraints, in general, only an
approximate solution may be obtained. However, up to five exact
poses can still be specified to enable generation of planar four-bar
linkages that can go through some poses exactly while approxi-
mating others. Pick-and-place operations fall under this category
of problem, wherein the first and the last poses are exact con-
straints while in-between poses are to be synthesized only approx-
imately. Specifying a fixed pose for such problems amounts to
substituting for the displacement coordinates in Eq. (6), which
provides an additional linear equation as follows:

X8

j¼1

Aijpj ¼ 0 (9)

where Aij are known in terms of the planar quaternion coordinates.
Together with the two quadratic constraints in Eq. (7) and the
above linear constraint define the mixed exact- and approximate-
synthesis problem, where up to five exact poses may be specified.

4.2 Line Constraint for Pivots. Line constraint for fixed piv-
ots constrains the center point (Xc, Yc) of an RR dyad to a line
L1Xcþ L2Ycþ L3¼ 0. Using inverse relationships in Eq. (8), we
obtain a linear equation in pi given by

�L1p4 � L2p5 þ L3p1 ¼ 0 (10)

A similar constraint equation is obtained when the moving pivot
of an RR dyad is constrained to a line (l1, l2, l3) fixed in the mov-
ing frame given by

�l1p2 � l2p3 þ l3p1 ¼ 0 (11)

Both of the above two constraints are in a form similar to Eq. (9)
except that certain pi are zero and the Aij are in terms of the line
coordinates. The two quadratic constraints in Eq. (7) and the
above linear constraint define the problem where the fixed or
moving pivots are to lie on a given line.

4.3 Point Constraints for Pivots. Specifying locations for
fixed or moving pivots of the mechanism proves to be useful in
practice as well. Let (Xc,Yc) be one of these fixed-pivot locations.
Each fixed-pivot location forms two linear equations in pi, which
using inverse kinematic relations for RR dyads can be given as

Xcp1 þ p4 ¼ 0

Ycp1 þ p5 ¼ 0
(12)

It is worth noting that all the types of dyads may not satisfy the
imposed point constraints. This is due to fact that all the RP dyads
have dyad coefficients p1, p4, and p5 zero, so they automatically
satisfy Eq. (12) but do not necessarily have fixed pivot on speci-
fied location. This problem can be easily tackled by filtering out
the extraneous solutions. Moving-pivot locations can also be pro-
vided in the same way as fixed-pivot locations. They too form two
linear equations given by

xmp1 þ p2 ¼ 0

ymp1 þ p3 ¼ 0
(13)

where (xm, ym) are the coordinates of moving-pivot location in
moving reference frame. Once again, all the pivot location con-
straints are linear and in the same form as Eq. (9). The two quad-
ratic constraints in Eq. (7) and the above two linear constraints
define the problem where the fixed or moving pivots are located at
a given point.

5 Algebraic Fitting of Given Motion to the Geometric

Constraints

We have seen that for motion-generation problems, the inputs
are task poses and line and point constraints. These input con-
straints are linear equations in pi of the form

X8

j¼1

Aijpj ¼ 0 (14)

where Aij depends upon the type of ith input constraint, i.e., pose,
line, or point constraint. Thus, given n pose or pivot constraints,
we can write n linear equations in pi. In matrix form, they are
given by

½A�

p1

p2

�

p8

2
664

3
775 ¼ 0; where ½A�

¼

A11 A12 A13 A14 � � � � � � � � � A18

A21 A22 A23 A24 � � � � � � � � � A28

� � � � � � � �

An1 An2 An3 An4 � � � � � � � � � An8

2
664

3
775
(15)

This system of equations can be solved using least-square fit-
ting via a matrix decomposition approach, such as singular value
decomposition (SVD) [46]. As the matrix [A]T[A] is 8� 8 and
positive semidefinite, all the eigenvalues are non-negative and the
eigenvector associated with the smallest of the eight eigenvalues
is a “candidate” solution for p¼ (p1, p2,…, p8).

Burmester [47] showed that a planar four-bar linkage can go
through five poses (n¼ 5) exactly. However, in our formulation,
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we need not distinguish between poses and other constraints—
finite set of linkages are obtained nonetheless. The problem could
be given as five task poses, four poses with a line constraint, three
poses with a fixed point constraint or even two poses with a point
and line constraint. When n¼ 5, the system of equation is fully
constrained as there are five dyadal parameters to determine, and
thus, the effective rank of the matrix [A] is five. In this case, the
matrix [A]T[A] has three zero eigenvalues and the corresponding
eigenvectors, va, vb, and vc, define the basis for the null space. Let
a, b, and c denote three real parameters. Then, any vector in the
null space is given by

p ¼ ava þ bvb þ cvc (16)

For vector p to satisfy Eq. (7), we substitute Eq. (16) into Eq.
(7) and obtain two homogeneous quadratic equations in (a, b, and
c)

K10a2 þ K11b
2 þ K12abþ K13acþ K14bcþ K15c2 ¼ 0

K20a2 þ K21b
2 þ K22abþ K23acþ K24bcþ K25c2 ¼ 0

(17)

where Kij are defined by components of the three eigenvectors,
which can be obtained from using singular value decomposition
of [A] [46].

Solving Eq. (17) and substituting in Eq. (16) would lead to the
homogeneous coordinates of dyads. By investigating the patterns
of zeros3 in p¼ (p1, p2,…, p8), one can also determine which of
the three dyads, RR, PR, and RP, should be used for the given
task. Thus, the aforementioned task analysis algorithm may yield
up to four dyads from the solution of two quadratic equations in
Eq. (7), two of which can be combined to form up to six four-bar
linkages. Design parameters such as (x, y) and (a0, a1, a2, a3) can
be obtained by inverting Eq. (8).

5.1 Null-Space Modification for Additional Constraints.
When n> 5, the system of equation is overconstrained; however,
a least-square error solution may still be found using the SVD
approach. In this case, if the pose and geometric constraints are
given arbitrarily, only an approximate solution can be found—
none of the n constraints may be satisfied exactly. This forms the
basis for tolerance-based synthesis not only for given poses but
also for other constraints. Fortunately, the aforementioned
approach can still be used by picking three eigenvectors corre-
sponding to three smallest eigenvalues and using Eqs. (16) and
(17). This amounts to selecting the minimal null-subspace that
allows us to compute the five dyad parameters uniquely. Interest-
ingly, it is still possible to specify up to five additional constraints
that can be satisfied exactly. We discuss this possibility next.

If an extra linear constraint on the pivot locations is given, then
apart from the two quadratic conditions, now we have an addi-
tional linear equation which also needs to be satisfied exactly.
This can be solved by selecting a four-dimensional subspace from
the full eight-dimensional null-space of [A]. Then, the dyad vector
p has four eigenvectors corresponding to the four smallest eigen-
values. If va, vb, vc, and vl denote four eigenvectors associated
with those eigenvalues, then an arbitrary vector p is given by

p ¼ ava þ bvb þ cvc þ lvl (18)

To compute (a, b, c, l), apart from the two constraints in Eq. (7),
we add a line constraint for pivots, i.e.,

k1aþ k2bþ k3cþ k4l ¼ 0 (19)

The above is obtained by substituting for p in Eq. (10) or Eq. (11).
Due to the linearity of the additional constraints, the polynomial
complexity of the system to be solved does not change. Thus, the

two quadratic conditions (7) and (19) still lead to a single quartic
equation, which is solved to compute (a, b, c, l).

If two extra linear constraints on the pivot locations are given,
then we select a five-dimensional null-subspace so as to be able to
satisfy additional conditions exactly. If the corresponding eigen-
vectors are denoted by va, vb, vc, vl, and vg, then a vector in the
null space is given by

p ¼ ava þ bvb þ cvc þ lvl þ gvg (20)

We may use two linear equations of the form (19) to limit solu-
tions. If these two equations represent two intersecting lines, then
the intersection point can be seen as location of the fixed or mov-
ing pivots. In this case, (a, b, c, l, �) are solved from Eq. (7) and
two linear equations of the form (19).

Extending this further, it can be seen that when the full null-
space of the matrix [A] is utilized, a maximum of five additional
constraints can be satisfied, which is consistent with the fact that
for a dyad determined by five independent design parameters,
only five constraints are needed.

The mixed exact- and approximate-pose synthesis problem is
an example of the preceding cases. In such problems, the designer
desires a few poses to be exact. Whenever a pose is set to be
exact, its linear constraint of the form (9) becomes part of the
exact conditions to be satisfied apart from the quadratic condi-
tions. For example, for a pick-and-place motion, where only the
first and last poses are critical and should be interpolated exactly,
in between poses can be approximately satisfied. Thus, assuming
a total of n> 5 given poses, including first and the last one, the
matrix [A] is of size (n – 2)� 8 consisting of pose constraints cor-
responding to approximate poses, while the system of constraint
consists of quadratic conditions (7) and two linear equations
obtained by substituting p from Eq. (20) in Eq. (9).

In short, this approach leads to a unified algorithm for both
exact synthesis (when n¼ 5) and approximate synthesis (when
n> 5) of planar dyads that can handle joint type and dimensional
synthesis simultaneously. Even in the case when n 6¼ 5, up to five
additional constraints can be satisfied exactly. This framework
can accept any number of poses, points, or lines constraints in
union of each other to find a pool of dyads which in turn can be
selected two at a time to form various linkages. Thus, for exam-
ple, the designer could specify a rectangular frame for a planar
linkage on the boundary of which pivots are to be located and the
framework would enumerate all the dyad solutions which satisfy
this constraint. Then, the designer can pick two preferred dyads.
This equivalence between a positional and a geometrical con-
straint leads to a rich system of high-level abstraction and flexibil-
ity for the designer.

6 Case Studies

In this section, four case studies illustrating primary functions
of MotionGen are presented. First three case studies present dif-
ferent ways of synthesizing four-bar mechanism based on func-
tional requirements of various machines and are based on
examples presented in Russel et al. [48]. The last case study
shows how a film-advancing four-bar mechanism can be simu-
lated and reverse-engineered.

6.1 Moving a Stamping Tool Through Five Positions. Five
position synthesis problem may have four, two, or no solutions for
dyads, so there can be up to six linkages that can interpolate
through given positions. The MotionGen can also perform approx-
imate synthesis for more than five positions and allows specifying
a few of those poses as exact as well.

Problem statement. In this problem, stamping operation is to be
performed on the parts moving on a conveyer belt. The objective
is to synthesize a four bar that guides stamping tool through speci-
fied precision positions in desired order as shown in Fig. 1. Posi-
tions data are given in Table 1. Die can be changed at pose 1,

3In numerical implementation, a component of normalized vector p is assumed to
be zero if its value is less than 10–8.
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while stamping is done at pose 4. Poses 1 and 4 are critical poses
while remaining poses give a cyclic path that tool should follow,
so they can be tweaked slightly if necessary.

As five positions are entered, all the possible dyads are com-
puted. By clicking on dyads shown on the left side of screen in
MotionGen, one can see the linkages and their respective coupler
curves along with its motion animation. It is not trivial to find
linkages free of circuit and branch defect; therefore, noncritical
poses can be tweaked to find acceptable solutions. For this prob-
lem, four dyads of type RR are computed. Figure 2 shows a

Fig. 1 Five stamping poses; the stamping tool in first pose is almost horizontal,
while in the fourth pose it is almost vertical

Table 1 Poses for stamping tool

Poses X Y / (deg)

Pose 1 �1.081 2.132 1.0500
Pose 2 �0.484 1.268 338.42
Pose 3 �0.425 �1.436 287.26
Pose 4 �1.139 �2.438 271.23
Pose 5 �0.524 �1.158 316.10

Fig. 2 Stamping: Grashof crank–rocker solution; two curves shown are coupler curves in two
different circuits
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Grashof RRRR linkage obtained by selecting first two dyads,
while Table 2 contains joint information. All the joint-data infor-
mation for linkage solutions in this paper are given in the fixed
coordinate system when coupler is at the first pose, and the origin
of the fixed coordinate frame in all the figures generated from the
app is at the intersection of axes.

6.2 Moving an Excavator Bucket Through Four Positions
With Fixed-Line Constraint. For four-position motion genera-
tion, we know that there are 11 number of planar four-bar link-
ages. Following approach outlined in Sec. 4, a finite number of
solutions can be obtained by specifying: (1) a fixed-line constraint
or (2) a moving-line constraint. This type of constraint keeps
either fixed or moving pivots on a line specified.

Problem Statement. Synthesize a four-bar linkage which guides
an excavator bucket in four precision positions as shown in Fig. 3.
These poses are given in Table 3. Mechanism should be able to
move the bucket in a cyclic way as shown in Fig. 3 to fulfill its
function. Here, obtaining a Grashof mechanism is important,
because bucket has to move from pose 3 to pose 1 without moving
through pose 2. It is also desirable if all the fixed pivots are on a
line that goes through poses 1 and 3, which will make it easy to
mount it on the structure of vehicle.

When a fixed-line constraint is provided, all the possible dyad
solutions are generated. The line can be tweaked to get different
solutions. Table 4 gives the line constraint by listing its start point
and orientation. As soon as this line is drawn on the screen, four
RR, RR, RR, and RP dyads solutions are obtained. These dyads

make up to six different linkages. By selecting two dyads shown
on the left side of screen in MotionGen, one can see the assembled
linkage, see Fig. 4. It can be seen that fixed pivots of the RR dyads
are along the line which is desirable from mounting perspective.
Table 5 contains joint data for the solution.

6.3 Moving an Aircraft Landing Gear Through Three
Positions With Two Fixed-Pivot Constraints. Synthesizing a
four-bar mechanism to guide the landing gear through three speci-
fied poses is selected to test three position synthesis problems
with specified fixed-pivot constraints function of MotionGen.

Problem Statement. Synthesize a compact planar four-bar
mechanism to guide the landing gear of an aircraft through the
three precision positions as shown in Fig. 5, such that synthesized
mechanism does not interfere with road at the landing position.
The poses data for the problem are given in Table. 6.

Choice of fixed pivots: This problem has 12 solutions for RR
dyads unless we specify either two moving or two fixed pivots of
four bar. Choice of fixed pivots is motivated by ease of design,
from structure and assembly point of view. For the first guess,
fixed-pivot location chosen is near the fixed structure of aircraft so
that hinges will be easy to mount. As soon as two fixed-pivot

Table 2 Stamping linkage joint data

Point X Y

Fixed pivot 1 �3.0649 �1.1104
Moving pivot 1 �2.8790 �0.3815
Coupler point �1.0806 2.1318
Moving pivot 2 0.4426 2.5354
Fixed pivot 2 �3.6238 �0.0837

Fig. 3 Excavator bucket motion through four positions

Table 3 Poses for the excavator bucket

Poses X Y / (deg)

Pose 1 �2.1180 0.7620 269.59
Pose 2 �1.8250 �0.8310 296.62
Pose 3 0.7320 0.1410 358.67
Pose 4 0.9450 2.7390 279.98

Table 4 Excavator: fixed-line constraint

X Y / (deg)

�1.6920 �0.2100 3.81
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Fig. 4 Excavator: Grashof crank–rocker linkage obtained by selecting two dyads

Table 5 Excavator linkage joint data: Grashof solution

Point X Y

Fixed pivot 1 �0.9339 �0.1591
Moving pivot 1 �3.2388 0.2250
Coupler point �2.1178 0.7620
Moving pivot 2 �0.2016 1.3827
Fixed pivot 2 3.1776 0.1150

Fig. 5 Poses for landing gear

Table 6 Poses for landing gear

Poses X Y / (deg)

Pose 1 0.258 1.658 333.69
Pose 2 0.205 0.957 11.500
Pose 3 �0.061 0.270 57.160
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locations are provided, MotionGen synthesizes all the possible
dyads. The mechanism shown in Fig. 6 has fixed pivots mounted
on the structure. The mechanism has small sized links, which
helps in weight reduction and mechanism does not interfere with
road, however, it is a non-Grashof type four bar. This solution can
be useful if Grashof mechanism is not a necessary criterion.
Table 7 contains joint data for the selected mechanism.

Fig. 6 Landing gear: non-Grashof triple-rocker linkage

Table 7 Landing gear linkage joint data: non-Grashof solution

Point X Y

Fixed pivot 1 �1.8031 0.5992
Moving pivot 1 0.1181 1.3752
Coupler end point 0.2581 1.6584
Moving pivot 2 0.6720 0.7609
Fixed pivot 2 1.5822 1.7479

Fig. 7 Landing gear: Grashof crank–rocker linkage
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Another strategy is to specify moving pivots to generate more
solutions. Figure 7 shows a Grashof linkage obtained by using
moving pivots, although links are bigger in size compared to the
non-Grashof solution in Fig. 6. Table 8 contains the joint data for
the linkage.

6.4 Simulation and Reverse-Engineering of a Film-
Advancing Mechanism. Norton [3] presented an interesting pla-
nar four-bar film-advancing mechanism, which is shown in Fig. 8.

Accompanying the figure in the text is a description of how the
mechanism works by pulling the film down through its perfora-
tions on the side. The description highlights the importance of
engaging the coupler-hook into perforations almost horizontally, a
vertically downward movement of the film and then at the
lowest point, an almost horizontal retraction to avoid jamming.
MotionGen allows importing a picture of a mechanism and
drawing on top of it to appreciate how the linkage really works. In
this case, two RR dyads are drawn over the image by approxi-
mately matching the fixed pivots, moving pivots, and the coupler
point. Once it is drawn, coupler curves are computed and dis-
played on the screen as shown in Fig. 8 and the mechanism can be
animated.

If a practical constraint arises that mechanism can only be
allowed to mount along a specified line, then mechanism can be
reverse-engineered using the pose capture tool in MotionGen.
While mechanism is animated, four positions are captured. These
four positions are then fed to synthesis algorithm along with speci-
fied line constraint. Resulted reverse-engineered mechanism is
shown in Fig. 9.

Table 8 Landing gear linkage joint data: Grashof solution

Point X Y

Fixed pivot 1 �0.4304 0.9989
Moving pivot 1 0.3603 1.4139
Coupler end point 0.2544 1.6638
Moving pivot 2 �0.5959 0.1603
Fixed pivot 2 0.8145 0.7390

Fig. 8 Simulation of planar four-bar film-advancing mechanism in Motiongen

Fig. 9 Reverse-engineered four-bar film-advancing mechanism satisfying a practical line con-
straint in MotionGen
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7 Conclusion

This paper presented a unified framework for synthesizing pla-
nar four-bar linkage type and dimensions under various pose and
pivot constraints. The algorithm developed admits an arbitrary
number of such constraints. This algorithm is implemented in a
universal mobile app called MotionGen, which performs real-time
computation of planar four-bar linkages for a given motion and
other practical constraints. Instead of taking a black-box approach
for solving the problem, the app provides multiple pathways to
innovation by facilitating a dialog with the designer. MotionGen
has been tested on various contemporary Apple and Android devi-
ces, and no significant difference in performance was found. It
was also found that there is no cognizable lag in real-time compu-
tation for any kind of input or complexity. A number of case stud-
ies demonstrating the efficacy of the app were presented.
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