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A Machine Learning Approach
to Kinematic Synthesis

of Defect-Free Planar
Four-Bar Linkages

Shrinath Deshpande Sym‘.hesizing cir.cuit—, branch-, or order—defects—ﬁ‘e.e planar four-bar mechanism for the

motion generation problem has proven to be a difficult problem. These defects render
synthesized mechanisms useless to machine designers. Such defects arise from the artifi-
cial constraints of formulating the problem as a discrete precision position problem and
limitations of the methods, which ignore the continuity information in the input. In this
paper, we bring together diverse fields of pattern recognition, machine learning, artificial
neural network, and computational kinematics to present a novel approach that solves
this problem both efficiently and effectively. At the heart of this approach lies an objective
function, which compares the motion as a whole thereby capturing designer’s intent. In
contrast to widely used structural error or loop-closure equation-based error functions,
which convolute the optimization by considering shape, size, position, and orientation of
the given task simultaneously, this objective function computes motion difference in a
form, which is invariant to similarity transformations. We employ auto-encoder neural
networks to create a compact and clustered database of invariant motions of known
defect-free linkages, which serve as a good initial choice for further optimization. In spite
of highly nonlinear parameters space, our approach discovers a wide pool of defect-free
solutions very quickly. We show that by employing proven machine learning techniques,
this work could have far-reaching consequences to creating a multitude of useful and cre-
ative conceptual design solutions for mechanism synthesis problems, which go beyond
planar four-bar linkages. [DOI: 10.1115/1.4042325]
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1 Introduction representation loses critical information about the actual continu-
ous task and can lead to mechanisms with the order, circuit, and
branch defects; see Chase and Mirth [7] for a thorough discussion
on such defects. Unfortunately, these defects render mechanisms
useless for their intended application. For an example, consider a
motion generation problem shown in Fig. 1, where the objective is
to synthesize a four-bar mechanism that can perform the pre-
scribed motion going continuously from positions 1 to 5. Instead
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The mechanism synthesis problem deals with computing type
and dimensions of a linkage system for performing specific tasks,
which are often categorized as path, motion, and function genera-
tion; see McCarthy and Soh [1], Sandor and Erdman [2], Hunt [3],
Hartenberg and Denavit [4], Suh and Radcliffe [5], and Lohse [6].
Path generation task aims to synthesize a mechanism, which can
guide a particular point of a rigid body (often, the coupler) along a
prescribed path. On the other hand, the objective of the motion
ger}eratlon task is to syn.thes1ze a mechanism, Whlch can Agulfie a Prescribed Motion
rigid body along a prescribed motion. The prescribed path is given
as a time sequence of positions, whereas the prescribed motion is —— Coupler Circuit 1
given as a time sequence of positions and orientations. Various
approaches have been proposed in the literature aiming to find
acceptable solutions for path and motion generation problem. This
paper is concerned with calculating the dimensional parameters of
planar four-bar mechanisms while providing machine designers a
robust set of defect-free solutions during the conceptual design
phase, and thereby dramatically broadening the inventions design
capabilities.

A large majority of mechanism synthesis methods are based on
the precision position approach. This approach is a clever approxi-
mation trick to solve the above-mentioned problems, where the
task is discretized into precision positions. These positions,
instead of the actual task, are required to be interpolated or
approximated by the designed mechanism. However, this
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of dealing with an infinite number of positions from initial to final
one, currently this problem is simplified to design a four-bar that
goes through all the five positions without any guarantee on the
in-between motion. Burmester [8] showed that a four-bar can go
through at most five precision positions and even in the best case
scenario, there are a limited number of solutions. In this case, only
one solution is obtained as shown in Fig. 1. Although it can be
seen that the coupler of the four-bar passes exactly through five
precision positions, it cannot do so without changing the circuit. A
circuit represents an assembly mode in which the mechanism is
put together and to transition from one circuit to another, the
mechanism has to be taken apart and reassembled. This phenom-
enon is called circuit defect in the linkage, which makes the link-
age useless for the prescribed task. To deal with it, an approach
proposed in the literature is to tweak precision positions in a
brute-force way within some tolerance until a solution is found.
Even if a circuit defect-free solution is found, the coupler motion
in between the precision points may go through undesired poses
or in an incorrect order. This is an outcome of discarding the func-
tional aspect of continuous motion and turning the problem into
an interpolation problem bereft of important details.

Instead of brute-force search within tolerance regions, some
approaches apply separate constraints and form an optimization
problem of nondifferentiable objective function. These methods
employ metaheuristic algorithms like differential-evolution, parti-
cle swarm optimization, cuckoo search. Cabrera et al. [9] used
Genetic Algorithm for optimization in mechanism synthesis. Sar-
dashti et al. [10] used particle swarm optimization toward the
defect-free synthesis of four-bar linkage with joint clearance for
path generation problem. Ebrahimi and Payvandy [11] presented
an application of imperialist competitive algorithm for synthesiz-
ing path generating four-bars having desired workspace limits.
Bulatovic et al. [12] used cuckoo search for solving the problem
of optimum synthesis of a six-bar double dwell linkage.

Path synthesis methods based on Fourier analysis do take the
continuity information of coupler path into account. However,
most of them are defined only for closed-loop curves. Ullah and
Kota [13] have presented an invariant approach toward represen-
tation and synthesis of closed-loop paths through shape optimiza-
tion. They use a combination of global and local search methods
for optimizing Fourier deviant function to compute the dimen-
sions of planar four-bar linkages without an initial guess. Wu
et al. [14] presented a method based on finite Fourier series for
open and closed path generation of four-bar mechanisms. In the
case of motion generation, Li et al. [15] have developed a Fourier
descriptor-based approach for approximate motion generation.
Buskiewicz et al. [16] used the curvature of the coupler curve for
path synthesis using genetic algorithms. Khan et al. [17] presented
on approach where an artificial neural network is used for map-
ping between Fourier coefficients corresponding to a coupler path
and corresponding linkage parameters.

Instead of the global search, an alternative approach is to start
from a good initial guess based on an atlas and use local search
methods. We adopt this approach and combine with our novel for-
mulation to generate a diverse set of conceptual design solutions.
McGarva [18] took the earliest approach toward creating a library
for coupler trajectories based on the harmonic analysis. Wandling
[19] has presented an atlas-based approach, where coupler paths
and motions are stored in terms of Fourier transforms. Input
motion is searched for neighbors based on Euclidean distances of
Fourier transforms. Yue et al. [20] presented a similar approach of
path generation using P-type Fourier descriptor applicable for
open curves. In their approach, a task curve is transformed into
normalized Fourier coefficients and queried for the nearest neigh-
bor search. The best match is returned as the solution to the input.
Chu and Sun [21] presented an atlas-based method for synthesiz-
ing spatial four-bar linkages for function generation problems,
where orientation data is stored in terms of Fourier descriptors.
The above methods generate data based on uniform sampling in
the linkage parameter space. Given the highly nonlinear mapping
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between linkage parameters and coupler trajectory, this way of
sampling leads to a nonuniform sampling of trajectory space,
which causes under-representation of possible motions. We
address this issue by employing log-normal distribution in the
linkage parameter space to generate the data samples. Then, we
perform a compact clustering of the data using machine learning
techniques. A hierarchy is created in the database by means of
clustering, where the top level comprises of data points called
cluster centers, which are representative of the cluster points in
lower levels. Wandling [19] and Yu et al. [20] have built libraries
with all possible coupler curves, where one curve is broken down
into many segments for creating data for partial curves. In contrast
to this, we need to store only one curve that represents all the seg-
ments in it. This is because our representation facilitates part-to-
whole matching. None of the other previous methods facilitate
this partial matching of open motion curve into another open or
closed curve, which significantly contributes to providing a large
number of solutions, and reduces the data requirement even
further.

In this paper, we represent the given task as a parametric con-
tinuous function of poses or path points. The objective is to find a
linkage, which has a coupler motion or path compatible with the
given task. We develop a compatibility measure invariant to simi-
larity transformations so that position, scaling, and orientation of
the given path or motion do not convolute the optimization. Next
step is to conduct a search in the space of linkage parameters to
find linkages with coupler motions compatible with the prescribed
task. Although global search methods can be applied for finding
solutions, we employ an efficiently clustered database and
Powell’s local search method to come up with a variety of differ-
ent solutions. The motivation behind using a clustered database is
rooted in the broader objectives of machine design. Mechanism
synthesis is a critical part of the conceptual design phase, which
requires synthesis method to be prolific in terms of concept gener-
ation to (1) realize the potential of attainable design possibilities,
and (2) have the agility to adapt a design to evolving require-
ments. Our method only deals with the coupler curves and is not
dependent on the linkage type. Thus, it is readily scalable to any
type of planar linkage.

The synthesis routine starts by creating a continuous parametric
representation of a prescribed path or motion. We employ pattern
recognition and computational shape analysis to create an invari-
ant signature for the prescribed path and motion. A query repre-
senting an invariant signature of the prescribed path or motion is
raised for k nearest neighbors among cluster centers in the data-
base. These k neighbors, if needed, are subjected to fine-tuning by
local optimization to obtain a set of defect-free solutions. The
objective function that drives the synthesis process computes a
distance measure of dissimilarity between the task and the coupler
motion or path generated by current linkage parameters. This dis-
tance measure of dissimilarity inherently requires continuity of
motion, thus ensuring that the output mechanism is defect-free
throughout the task. Figure 2 illustrates an overview of our
method, which is codified in Algorithm 1.

The original contributions of the paper are in (1) creating a per-
ceptive problem formulation for path and motion generation,
which solves the issues associated with the precision position
approach, (2) exploiting the nonlinear nature of the relationship
between the linkage parameters and coupler motions to create a
sensitive, wide-ranging, compact, and efficient database with hier-
archical clustering, and (3) developing a novel algorithm for par-
tial matching of motions and paths which significantly improves
the synthesis.

Rest of this paper is organized as follows: Section 2 presents
the computation of motion and path signatures. Section 3 is com-
prised of evaluation criterion for signatures based on the shape
similarity, which leads to the formulation of error function for
optimization. Section 4 discusses the nature of objective function
via sensitivity analysis at a singularity. Section 5 presents the
database generation and clustering using auto-encoders for
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Fig.2 The machine learning approach begins by creating an invariant signature for the path and the motion data, which facil-
itates a compact and hierarchical clustered database and an auto-encoder neural network trained to elicit good, defect-free
solutions or subjected to local, fast optimization. The results are defect-free conceptual design solutions for input problems.

efficient sampling and query operations. Finally, two case studies
are presented in Sec. 6 to illustrate the efficiency and efficacy of
the method.

Algorithm 1: Planar Linkage Synthesis

Input: Task Motion {x;, y;, 0; }iv:l or Path {x;, y; }ivzl
Output: Linkage Parameters I: [;, I, ...
1 signature = calculateSignature(Input);
2 distances =[];
3 for centerPoint in clusterCenters do
4 | distances.push(getDistance(signature, centerPoint))
S end
6 kNeighbors = getNeighbors(distances, k) for neighbor in kNeighbors do
7 if threshold < neighbor.distance then

8 |  return neighbor.LinkParameters

9 else

10 | return Optimize(neighbor.LinkParameters)
11 end

12 end

2 Signatures of Coupler Path and Motion

Focus of the paper is on a novel method for mechanism synthe-
sis that takes a parametric motion (x:x(¢),y :y(z),0: 0(z)) or
path (x:x(r),y : y(¢)) as the input, and returns defect-free link-
ages that produce similar motion or path. The input is transformed
into a representation, termed as a signature, which is invariant to
similarity operations, viz., reflection, rotation, translation, and
scaling. Signatures for path and motion are termed as path signa-
ture and motion signature, respectively. For calculating the path
signature, we use the formulation developed by Cui et al. [22].

Consider a motion given in parametric form as, x : x(¢), y : y(¢),
0 : 0(), where 0(z) is the change in orientation along the path with
respect to initial orientation. It should be noted that 0(¢) is a con-
tinuous curve with domain (—oco, co) in contrast to conventional
domain, i.e., [—7, 7].

Curvature k() of the path (x : x(¢),y : y(¢)) and its integral K(r)
is given by

(1) = $(0(0) = (030 "
)

(20 +57)"

r

mnzjmww @

0

where x(t) and ¥(t) are the first- and second-order derivatives
with respect to parameter . As an example, the parametric motion
could be a B-spline motion as shown in Fig. 3. We compute x(f)
and K(¢) along the direction of ¢ using Eq. (1) and Eq. (2),
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Fig. 3 (a) The path of the input motion along with direction of
parametrization and (b) motion components x(f), y(f), 0(f) are
plotted against parameter t
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Fig. 4 Curvature and its unsigned integral for the path shown
in Fig. 3

respectively. Figure 4 shows computed curvature and its unsigned
integral for the coupler path shown in the Fig. 3. It can be seen
that the curvature is small at the start, increases as the curve bends
along the path and drops once again as the path straightens out. It
is obvious that the curvature plot will reverse if the direction of
parameterizations reverses, while the integral is a monotonically
increasing function.

Now, we resample the curvature at equal intervals of K(7),
which is equivalent to plotting x versus K in Fig. 5(a). This is
done by finding the parameter values of ¢ where K changes uni-
formly. For practical purposes, we find an array of the parameter ¢
such that K increments by 0.1. For each value of ¢ in that array,

JUNE 2019, Vol. 19 / 021004-3
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Fig. 5 Path and motion signatures of the motion shown in
Fig. 3: (a) path signature and (b) motion signature

we compute k(K) and 0(K) and store it as the path and motion sig-
natures, respectively. We note that there is a one-to-one mapping
between ¢t and K. Although it may seem natural to use planar
quaternions [23,24] for representing motion and finding its
signature, it couples orientation with the path in such a way that
the signatures formed no longer remain invariant to similarity
transformation.

These signatures are invariant under similarity transformations;
for proof, see Ref. [22]. We know that curvature changes inver-
sely to the scale of the curve, so when it is integrated along the
scaled curve, the scale factor cancels itself out. Reflection opera-
tion produces flipped path signature, but motion signature remains
invariant. Figure 5 shows the path and motion signature obtained
for the motion depicted in Fig. 3. It is important to note that the
signature depends on the direction of parameter ¢. The procedure
of signature calculation presented in this section is given in the
Algorithm 2.

Algorithm 2: Calculate Invariant Signatures

Input: Twice Differentiable Parametric Representation of Motion
(o x(0),y 2 y(2),0: (1))
Output: signature//discretized signal in form of an array
1 k(#) = ComputeCurvature(x, y) using Eq. (1)
2 K(t) = IntergrateCumulatively(x(#)) using Eq. (2)
3 motionSignature =[]
4 pathSignature =[]
5 for i = 0 — max(K) do
6 tmp = (value of ¢ corresponding to which K has value i)
7 i=i+0.1
8 motionSignature.push(0(tmp))
9 pathSignature.push(k(tmp))
10 end
11 return PathSignature, MotionSignature

3 Signature Matching and Error Function

The signatures obtained in previous steps contain important
information about the shape of the trajectory. In this section, we
formulate functions that evaluate the similarity between two tra-
jectories based on their signatures. These distance functions can
be used as an error metric, which can be minimized using optimi-
zation methods.

3.1 Partial Matching of Path Signatures. When a path
query is raised, it can be very useful to know whether this path
matches with a part of a path from the database. This subsection
presents a method for determining this partial similarity.

Let us consider two coupler paths, namely, Part and Whole as
shown in Fig. 6. Let p and W be their signatures, respectively,
where W completely contains p as shown in Fig. 7. The
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Fig. 6 Part path is formed by trimming whole path followed by
translation and scaling. Arrows indicate the increasing direc-
tion of parameter t.

Path Signatures
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Fig. 7 Path signatures of part p and whole W from Fig. 6. The
array index i corresponds to the index location for the array of
the K. The domain of path signature is scale-invariant but the
range still has a scaling factor, which is taken care of by nor-
malized cross-correlation.

orientation information shown in Fig. 6 is ignored for path match-
ing. It will be used later for matching of motion signatures. The
partial matching works as follows:

(1) p and W are expressed in terms of arrays and W must con-
tain more points than p.

(2) pis slided with offset index j along W.

(3) For each offset j, we compute normalized cross-correlation
function [25] given by

Cnj,p. W) = ”Z ("Z(i+j)*W(j:j+psi?)(p(i)— 1N
S (W(i+7) =W, )3 (pli) — )

i

i

where Cn(j, p, W) is the normalized cross-correlation value when
p is matched against W at jth index, py, is the length of the array
p, and W(j : j+ pyy) is mean of the values of array W between
index range of (j,j + psp).

Here, p acts as a template that tries to find the best match
against W while sliding over it along j. Domain of Cn(j,p, W) is
(0, 1), where 1 represents the complete embedment of p inside W,
i.e., Part is identical to a portion of Whole.

Transactions of the ASME
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Fig. 8 Normalized cross correlation of the signatures com-
puted along each direction is shown. It can be seen that exact
match is found at j=0.

The maximum score of the matching Crny,(p, W) represents
similarity of the template in W, and offset index j at which maxi-
mum occurs is the starting point for matching. As we know that
the signature reverses with reversal of the direction of ¢, we com-
pute the correlation along both directions and select the best
matching score, offset index, and the matching direction of sam-
pling. Figure 8 depicts normalized cross correlation function over
the sliding domain j for part and whole curves.

3.2 Partial Matching of Motion Signatures. This section
presents how a template motion can be checked against other
motion for potential matching. Consider part and whole motions
shown in Fig. 6. Let p and W be the motion signatures of the part
and whole motions, respectively, as shown in Fig. 9. Similar to
partial matching of path signatures, the cross-correlation function
is given by

Psp

E(,p, W) =Y ((W(i+j) = W(i:j+py) — () —p)* 4

i

where E(j,p,W) is the dissimilarity value when template p is
matched to W at jth index. Here, p tries to find the best match
against W while sliding over it. Similar to path signature, motion
signature is dependent on the direction of 7. Thus, we compute the
dissimilarity for both directions and choose whichever is the least,
i.e., Emin(p, W). Figure 10 depicts dissimilarity function over the
sliding domain j. In this case, as shown in Fig. 10, we find that the

Motion Signatures
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v P
-0.2 — W
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Fig. 9 Motion signatures of the trajectories shown in Fig. 6.
The domain as well as range of motion signature is invariant to
similarity transformation.
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Fig. 10 Dissimilarity function of two motion signatures along
both directions. It can be seen that the exact match is found at
j=0, where the template is fully embedded inside the other
motion.

first point is the matching point, which is consistent with the fact
that we have essentially sliced the whole motion to obtain the part
motion.

3.3 Objective Function for Synthesis. The functions in
Egs. (3) and (4) presented in the Secs. 3.1 and 3.2 can be used as
the error measure for path and motion synthesis of any planar
linkage, where the objective is to find a linkage that produces a
motion whose part or whole corresponds to the target motion (or
path). Thus, we can formulate the path synthesis problem as

argmin(1 — Cngax (p, W;)) 5)
LW

where [ is the vector of linkage parameters for particular planar
linkage, p is the signature of task path taken as the template, and
{W;}i_, is the signature set of all s coupler paths generated by the
linkage corresponding to /. In case of four-bar, /: 1,1, 13,14,1s,
where /; is link ratio of ith link shown in Fig. 11.

Similarly, we can formulate motion synthesis problem as

arg min(Emin (p, W;)) 6)
LW

Here, E is the dissimilarity function from Eq. (4) while p and
{W;}}_, are motion signatures instead of path signatures.

Fig. 11 Parametric representation of four-bar linkage with all
revolute joints. We set /[y =1 and one fixed joint at the origin of
the global frame along with making the fixed length of four-bar
parallel to the x-axis.

JUNE 2019, Vol. 19 / 021004-5
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Coupler Paths
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Fig. 12 Coupler motions of the four-bar linkage with variation
of parameters /; and L. It can be seen that motion topology
changes from close-loop Grashof to open-loop Triple Rocker.

Objective function evaluation step consists of calculation of
coupler motion or path and finding its dissimilarity score. It is
important to note that representation obtained in Sec. 2 reduces
the number of parameters in optimization. This optimization prob-
lem can be solved using search methods which do not require gra-
dient computation. We can employ global optimization methods
such as differential evolution at the start, and local optimization
approach, such as Powell’s method toward the end for faster con-
vergence [13].

Considering the highly nonlinear nature of the problem, finding
a good initial guess proves to be daunting. In addition, generating
a large set of solutions requires a diverse and large number of
good initial guesses. Thus, we exploit machine learning techni-
ques to create a database for finding many good initial guesses or
the solution itself. Section 5 presents the details of this approach.

4 Sensitivity Analysis of Signatures

Due to the complex relationship between parameter space and
generated motion, small changes in linkage parameters can pro-
duce large and discontinuous structural changes in the generated
motions. For example, a small change in crank length (/;) can
open a previously closed coupler path. Most of the methods based
on Fourier descriptors cannot capture the continuity at such singu-
lar locations, which adversely affect the optimization process. In
contrast to this behavior, the signatures derived in Sec. 2 have a
smooth transition at these singular locations due to shape similar-
ity between closed and just opened curve or motion.

To illustrate this via an example, we perform sensitivity
analysis in the vicinity of a singularity as follows: A four-bar
with link ratios (/: 0.55, [:1, I3: 1.5, I4: 1, Is:1) is subjected
to gradual change in parameters /;, and /3 by the amount
(—0.2, 0.2) in steps of 0.01. The link ratios are chosen such
that small changes in some parameters lead to the topological
change in the coupler curve. Error function between
motions of new and initial four-bar is calculated using Eq. (6).
Figure 12 shows coupler motion of some of the four-bars,
while Fig. 13 depicts their motion signatures. Please note that
these two figures show the effect of changing only one param-
eter /1. It can be seen from Fig. 12 that there exists a disconti-
nuity in the topology of coupler curves even though their
shapes have a continuous shift. Our method captures this con-
tinuity, which is shown by error function evaluations depicted
in Fig. 14, where it is visible that surface is well behaved in
the singularity region. This error function accounts for changes
to both the parameters /; and /5.

021004-6 / Vol. 19, JUNE 2019

Motion Signatures
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Fig. 13 Motion signatures obtained by steps given in Sec. 2.
Although topology difference is even more evident in this rep-
resentation; it also signifies the similarity pattern between
them.

20
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1.40

0.75 i
130 135 13

Fig. 14 Distance (Eni,) from Eq. (4) as the parameters /; and /5
are varied. Although open loop breaks at /;:0.55, /5:1.5, there are
no spikes of error function in the region near singularity, as the
shape is very similar between the two topologies.

5 Clustered Database of Planar Linkages

Having an invariant representation facilitating partial matching
greatly reduces data required to sample all possible types of
shapes of coupler motion. We have built a database of planar
four-bar linkages with revolute joints as an example, but the
approach is the same for any planar motion generating mecha-
nism. We generate this database comprising of 40,000 linkages
while taking following aspects into consideration:

(1) Sampling should maximize the uniformity of its distribu-
tion over the space of four-bar coupler motions.

(2) Data generation should be parallelized.

(3) It should be scalable to higher order linkages.

Figure 11 represents parametric representation of four-bar link-
age with parameters (/y, /5, 3, l4, [5). As mapping between four-
bar linkage parameter space and coupler motion space is highly
nonlinear, uniform distribution over linkage parameter space does
not necessarily mean uniform sampling over coupler motion
space. Thus, an efficient approach would be to sample more in the
regions where sensitivity is maximum. We have observed that
whenever the link ratios of four-bar linkage are close to one, the

Transactions of the ASME

as19[/9%18665/7700120/2/6 | /4pd-ajo1e/Bunssuibusbunndwoo/B10 swse’ uonos|joolelbipawse//:sdpy woly papeojumoq

20 610 ¢

6102 JaquianoN €| uo Jasn sooug Auols v ANNS Aq 4pd 400120



o o o
S~ ) o)

Probability

o
[N

0.0

2 3 4
Link Ratio

Fig. 15 Probability distribution function used in random sam-
pling for parameters I, I, and /5

sensitivity of shape of a coupler motion is higher than otherwise.
Thus, we have chosen log normal probability distribution (1t =0,
0=0.6) for selecting the link ratios: (/, /,, /3) as shown in
Fig. 15, and normal distribution (=0, g =2) for (I4, [s).

We use machine learning techniques such as clustering and
data-compression using auto-encoder neural networks to come up
with good initial guesses for local optimization. First, we cluster
the database using a hierarchical clustering algorithm. Then, we
find a representative data point in each cluster called cluster cen-
ters and form their set. This set of cluster centers represents a
diverse group of linkages. When a query is raised in the database,
the first step is to search for neighbors in the set of cluster centers.
This often yields a diverse set of neighbors and is used as the set
of independent initial guesses for local optimization.

5.1 Dimensionality Reduction Using Auto-Encoders. Each
data point in the database consists of a discrete signature, which is
kept to be of 100 float digits. In order to have efficient query
operations, we perform hierarchical clustering, a method that sum-
marizes and creates a hierarchy in the database. Clustering in
higher dimensions suffers from Curse of Dimensionality [26];
thus, we first perform dimensionality reduction using auto-
encoder neural networks. Auto-encoder is a powerful mapping
model, which learns to encode the input data in very compact
representation and can reconstruct the input with minimal error;
performing much better than principal component analysis [27].
This nonlinear mapping by auto-encoder can greatly improve the
representation of data for clustering [28]. Figure 16 shows a neu-
ral network architecture similar to the one we designed for the

. 2
9
0 [
; “0) [0
? 7
o 1o) & o) o
h h
@ ' Bot?lZneck ’ O
ho : {z1, 22}

X:{z1, 20,23, X = {41, %2, 43,94
(w1, 22, 23,24} Most Compressed Representation (w1, 22, }

Fig. 16 A small-scale version of the auto-encoder. This net-
work takes five-dimensional input in the input layer. At each
encoder layer, the input is compressed into a vector of lower
dimensions, the lowest at the bottleneck layer.

Journal of Computing and Information Science in Engineering

task. Our architecture consists of 100 neurons in the input and out-
put layer, while the five hidden layers have (80, 50, 10, 50, 80)
neurons, respectively. Each neuron in the hidden layer is activated
by rectified linear unit (ReLU) activation function. In ith hidden
layer, d“~") dimensional vector output of the previous layer hi)
is fed as input to produce d) dimensional output /;. Input—output
relationship of a layer is given by

hi = ReLU(W;hi_{ + b;) D
ReLU(x) = max(0, x) ®)

where W; is weight matrix with dimensions (d‘,d"~") and b; is
d% dimensional bias vector of ith layer, which are computed in
the process of training. Auto-encoders are trained to reconstruct
the input. In this way, each layer encodes the input, which is suffi-
cient for the next layers to reconstruct the output. The objective of
training is to find out the set of weights and biases that minimizes
the error loss given by

N
argminZHXi - X|I? )
0

, i—

where X; is the input, X; is the reconstructed output, and N is the
number of training examples.

Once a network is trained, the output of the bottle-neck layer
(hip) represents the compressed feature space (Z). As bottleneck
layer has 10 neurons and input is a 100-dimensional vector, it is
evident that information is compressed by a factor of 10, while
achieving 95% reconstruction accuracy as the result of training.
Standard clustering algorithms are performed on this latent® space
for better clustering [28]. We use agglomerative clustering, a
method of hierarchical clustering, which is an approach to parti-
tioning clustering for identifying groups in the dataset. Ward [29]
criterion is used for clustering, which minimizes the variance of
the clusters being merged. The distance metric used for clustering
is the Euclidean distance in the latent space. Although the more
accurate distance metric is the distance function discussed in Sec.
3, it is very expensive to calculate it for the entire database. Signa-
tures with O(m) points take O(mlogm) time for each comparison
and there are O(N*) number of comparisons to be made for the
database of N points.

Now, when the user raises a query, we use the distance function
from Sec. 3 for finding k nearest neighbors among 1500 cluster
centers. If a cluster center is not sufficiently close, we descend
into its corresponding cluster to find the closest data point. Motion
with highest similarity score is returned along with its correspond-
ing linkage parameters. If required, the parameters are fine-tuned
to match the query using local optimization methods. Computa-
tionally, on a 2.4 GHz Core i5 MacBook Pro with 8 GB memory,
every query takes 23 s on average to find the sorted list of nearest
neighbors among cluster centers.

6 Case Studies

This section presents two case studies presenting the effective-
ness of our approach for path and motion synthesis applications.

6.1 Path Generation. In the design phase of a rehabilitation
device that assists people to stand from sitting position, it is
required to generate linkages that can execute a sit-to-stand
trajectory of the hip joint as shown in Fig. 17. Table 1 presents the
discretized path data. As our approach requires parametric repre-
sentation of path, we first fit a cubic B-spline with cord length par-
ametrization through path data points to generate parametric
curve shown in Fig. 17. We compute its path signature by the
steps mentioned in Algorithm 2 and raise the query for nearest

2Compressed output of bottleneck layer.
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Fig. 17 Case study 1: path traced by hip joint during sit-to-
stand motion

Table 1 Case study 1: path data

Point X y Point X y

1 —7.81 —9.65 10 0.28 —1.31
2 —6.42 —9.81 11 0.64 1.07
3 —5.14 —9.62 12 0.98 2.73
4 —3.72 —8.99 13 1.47 4.30
5 —2.62 —8.14 14 2.73 6.58
6 —1.75 —7.13 15 3.46 7.41
7 —0.91 —5.67 16 4.07 7.95
8 —0.32 —4.10 17 4.70 8.41
9 —0.02 —-2.92 18 5.32 8.76

Table 2 Linkage parameters of nine nearest neighbor paths

Linkage I I I3 In Is 1 = Chpax
1 0.79 2.78 1.70 1.35 —0.71 0.0011
2 1.59 1.28 0.96 —1.74 —1.13 0.0015
3 0.99 0.71 1.66 —1.07 —0.85 0.0016
4 0.51 0.48 1.11 —0.02 —0.15 0.0017
5 0.93 0.75 2.18 —1.65 0.96 0.0018
6 1.29 1.98 1.02 —1.83 —1.33 0.0019
7 0.63 1.42 1.03 —1.90 —0.38 0.0020
8 0.66 0.85 0.84 —1.40 —0.13 0.0021
9 1.81 0.55 1.08 0.14 —0.04 0.0022

neighbors among 1500 cluster centers of our database. The dis-
tance metric for finding neighbors among cluster centers is 1 —
Chpax in Eq. (5). Table 2 tabulates the link ratios corresponding to
obtained nine nearest neighbors. Next step is to compute actual
parameters according to position, scale, and orientation of the
path. It is done by comparing analogous points found by the offset
index j in Eq. (3). Figure 18 shows the first eight four-bar mecha-
nisms corresponding to nearest signatures to path signature of
input. It can be clearly seen that these linkages generate highly
accurate paths for the sit to stand activity. It is important to note
that every solution is a result of partial matching of coupler paths,
and otherwise would be very hard to search using other atlas-
based approaches that only have the whole-to-whole matching
facility.

6.2 Motion Generation. The task is to find a pool of linkage
systems that can perform snow shoveling with a motion shown in

021004-8 / Vol. 19, JUNE 2019

(@) (b)

(c) j (d)
(e) ; (f) y
(9) % % (h v
Fig. 18 First eight linkages in Table 2 and their resultant cou-

pler paths
ﬁrﬁ
>

Fig. 19 Case study 2: user-specified motion necessary for the
snow shoveling task

Fig. 19. The motion data are tabulated in Table 3 to which we fit a
B-spline with cord length parametrization in order to get the para-
metric representation of motion. The task can also be treated as a
finite position motion generation and solved for valid solutions.
We try with our real-time computational methods of algebraic
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Table 3 Case study 2: pose data

Pose X y 0 Pose X y 0

1 0.03 0.07 6.06 6 1.39 0.47 0.73
2 0.38 0.01 6.18 7 1.36 0.77 1.03
3 0.71 —0.00 0.04 8 1.18 1.06 1.36
4 1.02 0.06 0.22 9 0.88 1.27 1.74
5 1.26 0.22 0.46

(a) (b)

Motion Signatures

6 —— query
" — 0
— 1
9 — 2
— 3
— 4
0 / 5
— 6
0 5 10 15 20 25

Fig. 20 Case study 2—Query result: motion signatures in the
dataset with highest similarity

Table 4 Case study 2: linkage parameters corresponding to
nine nearest neighbor motions

Linkage N 5 I8 N Is Enin

1 1.28 0.88 1.77 —1.32 1.79 0.0186
2 1.05 1.14 1.09 0.35 —0.60 0.0362
3 2.06 2.28 1.84 —1.71 0.51 0.0378
4 1.52 1.22 1.46 0.05 0.12 0.0402
5 1.12 0.99 0.57 0.05 0.68 0.0467
6 1.58 0.88 1.17 0.08 —-0.22 0.0481
7 2.17 0.38 2.87 —3.51 1.39 0.0578
8 1.55 0.79 0.85 —0.80 -0.52 0.0585
9 0.91 1.40 1.93 —0.93 —0.83 0.0605

fitting [30,31] but obtained solutions suffer from circuit defect,
which is not surprising as those methods do not account for the
continuity of input positions. Also, it is obvious that the coupler
should not drop the snow during its entire motion except at the
end. Although the prescribed motion entails this information, pre-
cision point approach cannot capture it.

Now, we employ the approach presented in this paper. The first
step is to calculate the motion signature of the task motion using
steps mentioned in Algorithm 2. For that, we follow the steps
given in Sec. 2 to obtain the motion signature depicted in Fig. 20.
Next, we raise the signature query for nearest signatures among
cluster centers of the database. Figure 20 shows nine nearest
neighbor signatures along with the task signature. Table 4 presents
the linkage parameters corresponding to the nearest neighbors
along with their distance score from the task. Coupler motions of
these linkages have a part, which matches with the shape of the
input motion query. Actual scaling and orientation of the linkage
can be found out easily by comparing analogous points, which are
given by the offset index j that corresponds to minimum distan-
ce(Enin) in Eq. (4). Figure 21 depicts the solutions obtained after
scaling and orienting the linkage to match required motion. All of
these linkages satisfactorily perform the input task without any
defect. As ground or fixed pivot locations should lie above the
ground, all solutions except the fourth solution are suitable for the

Journal of Computing and Information Science in Engineering

(c) (d)

()] (h)

Fig. 21 Case study 2: first eight linkages in Table 4 and their
resultant coupler motions

task. Although Fig. 21 shows that fifth and seventh solutions may
slightly interfere with the ground, it can be rectified by lifting the
mechanism slightly up or making small changes in coupler dimen-
sions. In light of these results, we can say that this approach pro-
duces a large variety of solutions, which otherwise would be very
hard to find using the precision point approach.

7 Conclusion

The methods based on precision point approach do not capture
continuity of the task. This causes the solutions to have the
branch, circuit, and order defects. Also, the formulation fails to
detect undesired properties of the coupler motion in the region
between precision points. Thus, we present a perceptive problem
formulation, by considering the entire prescribed task. We solve
the proposed formulation by employing machine-learning techni-
ques and generate a large number of defect-free conceptual
designs. The approach is highly data-efficient due to similarity
invariant representation and partial matching. Sensitivity analysis
indicates that the complexity of the objective function is well
behaved at the singular locations. The hierarchically clustered
database provides an efficient query search. Finally, the effective-
ness of the presented approach is showcased by two case studies.
Every solution presented in the examples section is a result of
part-to-whole matching. The other atlas-based approaches facili-
tate only whole-to-whole matching; hence, they would need a
very large amount of data to find these results.
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Although the partial matching metric is more accurate, it is
expensive in terms of computation cost. Thus, we use the Euclid-
ean metric in the latent space of compressed data for the hierarchi-
cal clustering of the database. The problem formulation is
invariant with respect to translation, orientation, and scaling.
Hence, constraints like geometric restrictions on pivots have to be
addressed after finding feasible solutions for the task. The
approach is general enough to be extended to higher order linkage
systems for which there are even fewer methods available for
synthesizing defect-free solutions. However, the database size
increases exponentially with the number of links in the mecha-
nisms. As an example, a Watt type six-bar database needs to be
roughly 400 times larger than the four-bar database. A potential
solution to this problem could be to use learning-based methods,
where the pattern is learned instead of storing all of the informa-
tion. Overall, the method provides a holistic approach toward the
prescribed path and motion synthesis and encourages artificial
intelligence techniques to make an impact.
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