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Burmester Problem
The classic Burmester problem is concerned with computing dimensions of planar four-
bar linkages consisting of all revolute joints for five-pose problems. We define extended
Burmester problem as the one where all types of planar four-bars consisting of dyads of
type RR, PR, RP, or PP (R: revolute, P: prismatic) and their dimensions need to be com-
puted for n-geometric constraints, where a geometric constraint is an algebraically
expressed constraint on the pose, pivots, or something equivalent. In addition, we extend
it to linear, nonlinear, exact, and approximate constraints. This extension also includes
the problems when there is no solution to the classic Burmester problem, but designers
would still like to design a four-bar that may come closest to capturing their intent.
Machine designers often grapple with such problems while designing linkage systems
where the constraints are of different varieties and usually imprecise. In this paper, we
present (1) a unified approach for solving the extended Burmester problem by showing
that all linear and nonlinear constraints can be handled in a unified way without resort-
ing to special cases, (2) in the event of no or unsatisfactory solutions to the synthesis
problem, certain constraints can be relaxed, and (3) such constraints can be approxi-
mately satisfied by minimizing the algebraic fitting error using Lagrange multiplier
method. We present a new algorithm, which solves new problems including optimal
approximate synthesis of Burmester problem with no exact solutions.
[DOI: 10.1115/1.4037801]

1 Introduction

According to an article by Professor McCarthy [1], over the
past 40 yr, a total number of 2, 688 U.S. patents have been
awarded that involve four-bar linkages, while in the same period,
the next natural extension to more complex linkages, viz., six-bar
linkages have been awarded a mere 84 patents. This is a clear
demonstration of the popularity and ubiquity of planar four-bar
linkages. Therefore, it is not surprising that the four-bar linkage
synthesis and analysis problem still receives a considerable atten-
tion of researchers. Several text books, such as McCarthy and Soh
[2], Sandor and Erdman [3], Hunt [4], Hartenberg and Denavit
[5], Suh and Radcliffe [6], and Lohse [7], cover the science and
art of planar four-bar and higher-order linkages. Kerle et al. [8]
have given a historical overview of the development of mecha-
nisms for motion generation. Despite a glut of literature on this
topic, simultaneous computation of type and dimensions and
accommodating practical geometric constraint for the motion gen-
eration problem has not been explored much. Erdman and Sandor
in their seminal mechanism design and analysis text [9] clearly
mention that assuming the wrong type (linkage topology and type
of joints) to compute the dimensions of a linkage system may
result in either none or suboptimal solutions.

This paper is a continuation of our research [10–12], wherein
we have presented a task-driven approach to simultaneous type
and dimensional synthesis of planar dyads for the motion genera-
tion problem. A four-bar linkage is constructed as combination of
any two of the synthesized dyads. This dyadic construction sim-
plifies the synthesis process and renders the method as modular
building block for synthesis of mechanisms with more links such
as six-bar mechanisms [10]. By using the concepts of kinematic
mapping [13,14] and planar quaternions [15,16], we obtained a

unified form of kinematic constraints of the planar dyads and cre-
ated an algorithm for unified type and dimensional synthesis of
planar four-bar linkages. This is accomplished via a two-step pro-
cess. The first step is algebraic fitting of image points on a pencil
of G-manifolds using singular value decomposition (SVD). This
pencil of G-manifolds forms a candidate solution space for con-
straints accounted for in the SVD process. In the second step, we
impose two fundamental quadratic conditions on the candidate
solutions to extract the dyad types and their dimensions.

Ravani and Roth [17,18] were the first to use kinematic map-
ping approach for mechanism synthesis. Thereafter, Bodduluri
and McCarthy [19], Bodduluri [20], Ge and Larochelle [21], Laro-
chelle [22,23], Husty et al. [24], Hayes et al. [25,26], Wu et al.
[27], Purwar and Gupta [28], and Schr€ocker et al. [29] have used
this approach for the motion generation problem.

The original contribution of this paper is in the reformulation of
our framework [10–12] in a general way to extend the Burmester
problem by accommodating a variety of geometric constraints. In
addition, the new formulation solves problems which our previous
approach could not solve. These problems are (1) finding optimal
approximate solutions for Burmester problem with no or subopti-
mal solutions, and (2) finding optimal linkages that minimize the
algebraic fitting error of nonlinear geometric constraints. We note
that in this paper, we do not restrict Burmester problem to only
five poses. Burmester [30] showed that only a finite set of four-
bars can be synthesized for five precision pose motion generation
problems. In this paper, we show that other than poses, other prac-
tical geometric constraints can also be accommodated. For more
than five geometric constraints, typically, only an approximate
motion synthesis can be performed. Holte et al. [31], Sabada and
coworkers [32], and Venkataraman et al. [33] have presented
some techniques for mixed exact-approximate synthesis of planar
mechanisms, albeit only for poses. Larochelle [34] has presented
dimensional synthesis technique for solving the mixed exact and
approximate motion synthesis problem for planar RR kinematic
chains. Lin et al. [35] have presented pole curve transformation-
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based approach for motion synthesis of planar mechanisms. Al-
Widyan et al. [36] have presented a numerically robust algorithm
to solve the classic Burmester problem. Bourrelle et al. [37] pre-
sented a graphical user interface that uses the algorithm developed
in Ref. [36] to solve the classic Burmester problem.

In general, there are two basic approaches to linkage synthesis
for motion generation problem: (1) precision pose approach and
(2) error minimization approach. In this paper, we use a combina-
tion of both methods in our framework.

Optimal synthesis of linkages is often a constrained nonlinear
and multimodal problem in a multidimensional design space. In
case of optimal linkage synthesis, relatively more work has been
reported for path and function generation problem than for motion
generation. Mariappan and Krishnamurty [38] used a generalized
exact gradient method for planar mechanism synthesis. Vallejo
et al. [39] developed an optimization method for planar mecha-
nisms with lower pairs of any type, which uses error function as
deformation of dimensions that mechanism has to undergo to per-
form the task. Yao and Angeles [40] solved path-generation prob-
lem using least-squared error function. They employ contour
method to find out all stationery points of the problem. Kramer
and Sandor [41] have presented a method of optimal design of
planar mechanisms called selective precision synthesis. Selective
precision synthesis can incorporate design requirements such as
link ratios, fixed pivot locations, and transmission angle range.
Gogate and Matekar [42] used method of differential evolution to
find optimal linkages based on three error functions, which ensure
that the mechanism is crank rocker, branch, and circuit defect free
with minimized positional and angular deviations. Venkataraman
et al. [33] used tolerance-based approach for four-position prob-
lem. They searched for optimal design parameters along suitable
ranges of center point curve. Cabrera et al. [43] have presented
genetic algorithm on planar 4R mechanism synthesis for its simple
implementation and fast convergence. Heged€us et al. [44] recently
presented synthesis of spatial 6R linkages for interpolating four
given poses using factorization of motion polynomials. All of the
above said methods first select the type of linkage to be optimized,
while our approach takes unified representation for all types of
planar dyads into account. In contrast to other methods, which
directly use linkage parameters, we formulate the optimization
problem in terms of intermediate parameters obtained by geomet-
ric fitting. This allows us to use a two-step process wherein we
first perform the least-squares fitting of the geometric constraints
and then use a Lagrange multiplier method with additional linear
and nonlinear constraints to extract the dyad types and dimen-
sions. This approach allows formulation of an objective function
consisting of squared error for the constraints to be minimized
while keeping certain other constraints exactly satisfied. Ulti-
mately, the minimization procedure leads to a system of quadratic
equations, which can be solved using computer algebra software
like MATHEMATICA. Each real solution of this system of equation
corresponds to one optimum dyad; all such dyads are computed
and then combined pairwise to obtain a set of four-bar linkage
solutions.

The organization of the paper is as follows: Section 2 reviews
the concept of kinematic mapping and planar quaternions as a spe-
cial case of dual quaternions. Section 3 reviews unified form of
kinematic constraints of the planar dyads as G-manifolds in the
image space, while Sec. 4 presents various geometric constraints
in the image space. Section 5 presents how we algebraically fit
various linear geometric constraints to the G-manifolds using
SVD. Section 6 presents the Lagrange multiplier method to mini-
mize error functions while keeping certain linear or nonlinear con-
straints satisfied exactly. We finally present two practical
examples in Sec. 7.

2 Kinematic Mapping

A planar displacement consisting of a translation (d1, d2) and a
rotation angle / from a moving frame M to a fixed frame F is

represented by a planar quaternion Z¼ (Z1, Z2, Z3, Z4) where (see
Refs. [16,17] for details)

Z1 ¼
1

2
d1 cos

/
2
þ d2 sin

/
2

� �
; Z2 ¼

1

2
�d1 sin

/
2
þ d2 cos

/
2

� �

Z3 ¼ sin
/
2
; Z4 ¼ cos

/
2

(1)

The components (Z1, Z2, Z3, Z4) define a point in a projective
three-space called the image space of planar displacements [17].
Then, a planar displacement represented as a homogeneous trans-
formation of point x¼ (x1, x2, x3) or line l¼ (l1, l2, l3) from M to F
can be given by

X ¼ ½H�x

½H� ¼

Z2
4 � Z2

3 �2Z3Z4 2ðZ1Z3 þ Z2Z4Þ

2Z3Z4 Z2
4 � Z2

3 2ðZ2Z3 � Z1Z4Þ

0 0 Z2
3 þ Z2

4

2
66664

3
77775

(2)

L ¼ ½ �H �l

½ �H � ¼

Z2
4 � Z2

3 �2Z3Z4 0

2Z3Z4 Z2
4 � Z2

3 0

2ðZ1Z3 � Z2Z4Þ 2ðZ2Z3 þ Z1Z4Þ Z2
3 þ Z2

4

2
6664

3
7775

(3)

where Z2
3 þ Z2

4 ¼ 1 and X¼ (X1, X2, X3) and L¼ (L1, L2, L3) are
corresponding point and line coordinates in F.

3 Generalized (G-) Constraint Manifold

In this section, we review a unified form of the kinematic con-
straints of four types of dyads (RR, PR, RP, and PP) in the image
space; see Ref. [10] for details. A point X or line L on the coupler
of a four-bar linkage can be geometrically constrained in one of
the following four ways: (1) for an RR dyad, the point is con-
strained to be on a circle with center and radius given as homoge-
neous coordinates (a0, a1, a2, a3); (2) for a PR dyad, the point is
constrained to be on a fixed line having coordinates (L1, L2, L3);
(3) for an RP dyad, a moving line (l1, l2, l3) is constrained to be
tangent to a circle (a1, a2, a3); and (4) for PP dyad, a point on line
(L1, L2, L3) is constrained to move along another line (2a1, 2a2,
a3). In Ref. [10], we have shown that all of these constraints
reduce to a single quadratic equation in the Cartesian space. When
the fixed frame coordinates of point and line from Eqs. (2) and (3)
are substituted in this quadratic condition, we obtain following
generalized equation:

p1ðZ2
1 þ Z2

2Þ þ p2ðZ1Z3 � Z2Z4Þ þ p3ðZ2Z3 þ Z1Z4Þ
þ p4ðZ1Z3 þ Z2Z4Þ þ p5ðZ2Z3 � Z1Z4Þ þ p6Z3Z4

þ p7ðZ2
3 � Z2

4Þ þ p8ðZ2
3 þ Z2

4Þ ¼ 0 (4)

where the eight coefficients pi are not independent but must satisfy
two quadratic conditions

p1p6 þ p2p5 � p3p4 ¼ 0; 2p1p7 � p2p4 � p3p5 ¼ 0 (5)

This is because pi are related to the geometric parameters of the
dyad by

p1 ¼ �a0; p2 ¼ a0x p3 ¼ a0y; p4 ¼ a1; p5 ¼ a2

p6 ¼ �a1yþ a2x; p7 ¼ �ða1xþ a2yÞ=2

p8 ¼ ða3 � a0ðx2 þ y2ÞÞ=4

(6)
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where (a0, a1, a2, a3) are the homogeneous coordinates of the con-
straint circle expressed in fixed reference frame, and (x, y) are the
coordinates of the circle point expressed in moving reference
frame. Here, a0 is the homogenizing factor. Equation (4) repre-
sents a generalized quadric (G-manifold) in the image space
whose actual form would depend on the dyad type. For RR dyad,
the quadric is a hyperboloid of one sheet, while for other dyads, it
is a hyperbolic paraboloid [16].

Inverse computation of these pi into geometric parameters is
done as follows:

l1 : l2 : l3 ¼ p2 : p3 : 2p8

x1 : x2 : x3 ¼ ðp6p5 � 2p7p4Þ : �ðp6p4 þ 2p7p5Þ : ðp2
5 þ p2

4Þ
a0 : a1 : a2 ¼ ðp2

2 þ p2
3Þ : ð�p3p6 � 2p2p7Þ : ðp2p6 � 2p3p7Þ

(7)

Equations (4) and (5) are said to define the constraint manifold
of all types of dyads (for details, see Ref. [10]). For a PR dyad, we
have a0¼ 0 and therefore, p1¼ p2¼ p3¼ 0; for the RP dyad, we
have p1¼ p4¼ p5¼ 0; and for the PP dyad, we have
p1¼ p2¼ p3¼ p4¼ p5¼ 0. In all of these cases, the quadratic con-
ditions in Eq. (5) are clearly satisfied. Thus, all planar dyads can
be represented in the same form by Eqs. (4) and (5), and we can
determine the type of a planar dyad by looking at the zeros in the
coefficients pi (called signature of a dyad). This leads to a unified
algorithm for simultaneous type and dimensional synthesis of pla-
nar dyads. In our approach, we first obtain the homogeneous coor-
dinates pi, determine the dyad type from the signature of
coefficient array pi, and then compute the dyad parameters using
inverse relationships in Eq. (6). The coefficient array pi forms an
eight-dimensional vector; henceforth, it is called a dyad vector p.

4 Task-Driven Geometric Constraints

In this section, we present various geometric constraints for the
motion generation problem and show their representation in the
image space. Some such constraints can be classified in following
ways: (1) pose (position and orientation) constraint on the coupler,
(2) constraint on moving or fixed pivot locations, namely, point,
line, or general quadratic curve.

4.1 Pose Constraint. Precision pose synthesis problem
requires coupler to go through given poses defined by Cartesian
space parameters (d1, d2, /). Converting these parameters into
planar quaternions (Z1p, Z2p, Z3p, Z4p) using Eq. (1) and then sub-
stituting into Eq. (4) gives us a pose constraint expressed by

p1ðZ2
1p þ Z2

2pÞ þ p2ðZ1pZ3p � Z2pZ4pÞ þ p3ðZ2pZ3p þ Z1pZ4pÞ
þ p4ðZ1pZ3p þ Z2pZ4pÞ þ p5ðZ2pZ3p � Z1pZ4pÞ þ p6Z3pZ4p

þ p7ðZ2
3p � Z2

4pÞ þ p8ðZ2
3p þ Z2

4pÞ ¼ 0 (8)

For the classic Burmester problem, five poses would be specified,
each of which would give one such equation.

4.2 Point Constraint. Specifying locations on fixed or mov-
ing pivots of the mechanism proves to be useful in practice. Let
(Xf, Yf) be one of these specified fixed pivot locations. Constrain-
ing each coordinate of pivot gives rise to one linear equation,
which in terms of pi can be given as

Xf p1 þ p4 ¼ 0

Yf p1 þ p5 ¼ 0
(9)

The above equations follow directly from Eq. (6), where Xf¼ a1/
a0, Yf¼ a2/a0. It is worth noting that all types of dyads may not
satisfy the imposed point constraints. This is due to fact that all
RP dyads have dyad coefficients p1, p4, and p5 zero, so they auto-
matically satisfy Eq. (9) but do not necessarily have fixed pivot on

specified location. This problem can be easily tackled by filtering
out the extraneous solutions. Moving pivot locations can also be
provided in the same way as fixed pivot locations. They too form
two linear equations given by

xmp1 þ p2 ¼ 0

ymp1 þ p3 ¼ 0
(10)

where (xm, ym) are the coordinates of moving pivot location in
moving reference frame.

4.3 Line Constraint. Line constraint for the fixed pivots con-
strains the center point (Xf, Yf) of an RR dyad to a line
L1Xfþ L2YfþL3¼ 0. Using inverse relationships in Eq. (6), we
obtain a linear equation in pi given by

�L1p4 � L2p5 þ L3p1 ¼ 0 (11)

A similar constraint equation is obtained when the moving pivot
of an RR dyad is constrained to a line (l1, l2, l3) attached to the
moving frame given by

�l1p2 � l2p3 þ l3p1 ¼ 0 (12)

4.4 Quadratic Curve Constraint. Let (Xf, Yf) be the location
of a fixed pivot of RR or RP dyad constrained to lie on a general
quadratic curve given by

AX2 þ BXY þ CY2 þ DX þ EY þ F ¼ 0 (13)

Then, substituting for (X¼Xf¼� p4/p1, Y¼Yf¼�p5/p1) into
above Eq. (13), we obtain an image space representation of the
constraint as follows:

Ap2
4 þ Bp4p5 þ Cp2

5 � Dp4p1 � Ep5p1 þ Fp2
1 ¼ 0 (14)

The above is a homogeneous equation of a quadric in the image
space and its degenerate forms reduce to the point and line con-
straints given in Eqs. (9) and (11). A similar equation can be
obtained when the moving pivot is constrained to the quadratic
curve of the form in Eq. (13). Without any loss of generalization,
for the demonstration purposes, let us look at an elliptical-curve
constraint now.

Consider an axisymmetric ellipse whose major axis is x1 and
minor axis is y1. Say, positive x1 axis makes h angle with positive
x-axis of fixed reference frame and the origin of x1–y1 frame is at
(xe, ye) with respect to fixed reference frame. Equation of ellipse
is given by

x2

r2
1

þ y2

r2
2

¼ 1 (15)

where r1 and r2 are radii of major and minor semi-axes and (x, y)
are co-ordinates of a point on the ellipse with respect to x1–y1

frame. These coordinates relate to the coordinates in the fixed
frame by

x ¼ ðX � xeÞcos hþ ðY � yeÞsin h
y ¼ ð�X þ xeÞsin hþ ðY � yeÞcos h

(16)

Substituting Eqs. (9) and (16) into Eq. (15) gives

�p4 � p1xeð Þcos hþ �p5 � p1yeð Þsin h
� �2

r2
1

þ
p4 þ p1xeð Þsin hþ �p5 � p1yeð Þcos h

� �2

r2
2

¼ p2
1 (17)
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All RP dyads (p1¼ p4¼ p5¼ 0) trivially satisfy Eq. (17), so extra-
neous RP dyads need to be filtered out. A similar constraint for
moving pivots could be found out, which is given by

�p2 � p1xeð Þcos hþ �p3 � p1yeð Þsin h
� �2

r2
1

þ
p2 þ p1xeð Þsin hþ �p3 � p1yeð Þcos h

� �2

r2
2

¼ p2
1 (18)

All PR dyads (p1¼ p2¼ p3¼ 0) trivially satisfy Eq. (18), so extra-
neous PR dyads need to be filtered out.

5 Algebraic Fitting of Linear Constraints

In this section, we show how we can solve the extended
Burmester problem via a two-step algebraic fitting process. A
straight-forward extension of the classic Burmester problem may
specify up to five linear geometric constraints of the forms given
by Eqs. (8)–(12). From all geometric constraints, we select five or
less linear constraints and assemble them into a matrix given by

½A�

p1

p2

�

p8

2
66664

3
77775 ¼ 0; where ½A� ¼

A11 A12 A13 A14 � � � A18

A21 A22 A23 A24 � � � A28

� � � � � �

An1 An2 An3 An4 � � � An8

2
66664

3
77775

(19)

where constraints are linear equations in pi of the form

Xn

j¼1

Aijpj ¼ 0 (20)

where Aij depends upon the type of ith input constraint, i.e., pose-,
line-, or point-constraint or an equivalent linear constraint. This
system of equations is solved using SVD, which minimizes the
least-squares error of fitting. This is a zero-eigenvalue problem
and for n¼ 5 constraints, unique solutions for the dyad vector p
can be obtained, if they exist. As the matrix [A] is n� 8, where
n� 5, nullity of the matrix is 8� n. Hence, there are 8� n singu-
lar vectors, which define null space of solution vectors given by
{v1, v2,..., vn}. Any vector p that lies inside this vector space is a
solution to algebraic fitting of n geometric constraints given by

p ¼ a1v1 þ a2v2 þ � � � þ a8�nv8�n (21)

where ai are (8� n) homogeneous parameters; thus, without loss
of generality, we can assume a1¼ 1. For n¼ 5, the nullity of the
matrix [A] is three; therefore, three singular vectors corresponding
to the smallest singular-values are selected to form the dyad vec-
tor p. Substituting for p in the quadratic conditions given by Eq.
(5), one can solve for two unknowns a2 and a3. Examining the sig-
nature of p, the dyad type is determined and by inverse computa-
tion in Eq. (7), the mechanism parameters are obtained. This
fitting process also works for n> 5 cases; however, only an
approximate solution may be obtained in this case. Typically, for
large values of n, such solutions mostly produce unsatisfactory
results.

Now, consider the possibility that no real or unacceptable solu-
tions emerge from the above fitting process for n¼ 5 case. This is
not an impractical scenario—very often, for five pose problems,
the fitting process yields none, non-Grashof, or defective linkages.
Another possibility is that the designer does not care about the
five poses to be interpolated exactly. Manufacturing errors in links
and play at joints would never lead to an exact interpolation of
constraints anyways. For a pick and place operation, the first and
last poses may be critical, while in between poses may be desired

to be reached in a minimum-error sense. Moreover, the designer
may want to introduce more important constraints in the problem,
such as adding a location for pivots. The SVD also does not admit
a nonlinear constraint of the form (13). In that case, the above for-
mulation breaks down. We now need a method to relax certain
constraints while simultaneously satisfying exact constraints. In
Sec. 6, we show how such problems are solved.

6 Error Functions and Constraints

This section presents the error function that is to be minimized
during optimization. The error function would be created from the
relaxed constraints. If linear geometric constraints like pose, line,
or point constraints are relaxed for minimization, then the alge-
braic error of measure can be defined by substituting expression
for p from Eq. (21) into their respective constraint equations,
which can be written as

f1ðai; i ¼ 1…8� nÞ ¼ k1a1 þ k2a2 þ � � � þ k8�na8�n (22)

where ki are defined in terms of the parameters of dyad vector p
and the known constraint parameters; e.g., Xf and Yf are the known
constraint parameters for the fixed-pivot constraint.

Similarly, the algebraic error that evaluates distance of the fixed
or moving pivots from a known ellipse is given by

f2ðai; i ¼ 1…8� nÞ ¼
Xi¼8�n;j¼8�n

i¼1;j¼1

kijaiaj þ
Xi¼8�n;

i¼1

kiai þ k0 (23)

where k0, ki, and kij are also defined in terms of the parameters of
dyad vector p and the constraint parameters.

In addition, dyad vector parameters pi also need to satisfy two
quadratic relations in Eq. (5). Thus, two quadratic equality con-
straints obtained by substituting Eq. (21) into Eq. (5) are of the
form

h1ðai; i ¼ 1…8� nÞ ¼
Xi¼8�n;j¼8�n

i¼1;j¼1

k1ijaiaj

h2ðai; i ¼ 1…8� nÞ ¼
Xi¼8�n;j¼8�n

i¼1;j¼1

k2ijaiaj

(24)

where k1ij and k2ij are defined in terms of dyad vector parameters
pi.

6.1 Inequality Constraints. When the user does not need the
fixed pivots to be exact locations, but in a specified region, the
constraints have to be modeled as inequality constraints. One
example for bounded regional constraint is the inner region of an
ellipse, given by

x2

r2
1

þ y2

r2
2

� 1 � 0 (25)

Substituting such constraints into dyad vector parameters and
subsequently in coefficients ai using Eq. (21), we get a form given
by

g ¼
Xi¼8�n;j¼8�n

i¼1;j¼1

kijaiaj þ
Xi¼8�n;

i¼1

kiai þ k0 � 0 (26)

6.2 Minimization Using Lagrange Multipliers. In Sec. 5,
we created algebraic fitting function for various linear and nonlin-
ear constraints. Now, we present the Lagrange multiplier method
to solve the optimization problem.
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For a task of n linear and m nonlinear geometric constraints
with u linear and v nonlinear error functions with corresponding
weight x1i and x2j

Minimize f ðaiÞ ¼
Xi¼u

i¼1

f1i

2x1i þ
Xj¼v

j¼1

f2j

2x2j (27)

subjected to constraints

h1ðaiÞ ¼ 0 h2ðaiÞ ¼ 0

h3ðaiÞ ¼
Xi¼8�n;j¼8�n

i¼1;j¼1

kijaiaj þ
Xi¼8�n;

i¼1

kiai þ k0 ¼ 0 (28)

where h3(ai) is a nonhomogeneous quadratic equation, which
exists if nonlinear geometric constraints like Eqs. (17) and (18)
are present. Weights x1i and x2j can be chosen by the user
according to the synthesis requirements by weighing the relative
importance of the constraints. The method of Lagrange multipliers
is used to obtain a set of optimum solutions. In this method, the
Lagrange objective function is defined as

Fðai; kiÞ ¼ �f ðaiÞ � k1h1 � k2h2 �…kðmþ2Þhðmþ2Þ � lg (29)

Here, there are (8� n) number of unknowns ai and (2þm) num-
ber of ki. Taking partial derivatives with respect to all ai (except
a1 which is 1) and ki, we obtain a system of equations as follows:

@

@a2

Fð Þ ¼ 0

@

@a3

Fð Þ ¼ 0

�

@

@a 8�nð Þ
Fð Þ ¼ 0

@

@k1

Fð Þ ¼ 0

@

@k2

Fð Þ ¼ 0

�

@

@k mþ2ð Þ
Fð Þ ¼ 0

(30)

for the case when inequality constraints are present, solutions also
need to satisfy Karush–Kuhn–Tucker condition [45] given by

l
@

@l
Fð Þ ¼ 0 (31)

while conditions for feasibility and optimality are, respectively,
given by the following equations:

g � 0 (32)

l � 0 (33)

The system of polynomial equations comprised of Eqs. (30)
and (31) is solved by computation of Grobner basis followed by
eigen-system methods to extract numerical roots. This is achieved
using Wolfram Mathematica’s NSolve [46] routine. Solutions
obtained are subjected to feasibility test using Eq. (32) to obtain
feasible solutions, which give rise to a set of dyad vectors by sub-
stituting them into Eq. (21). Examining the signature of the dyad
vector p, we can determine the dyad type and using the inverse
relations in Eq. (7), we can obtain the mechanism parameters. A
pool of mechanical dyads is obtained from the set of dyad vectors
using inverse relations given in Eq. (7). Any two of these

mechanical dyads can be combined to form a four-bar linkage as
the solution for motion generation problem. A complete method
using the Lagrange multiplier is given in Algorithm 1.

Algorithm 1: Algorithm for optimal four-bar linkage synthesis

1: procedure LAGRANGE MULTIPLIER METHOD

2: linear constraints (n)� 5
3: for each linear constraint do
4: add constraint eq. to [A]
5: perform SVD and pick n� 8 Singular Vectors
6: f¼ 0
7: error function for each of the relaxed constraint! fi
8: for each fi
9: f ¼ f þ f 2

i
10: form h1 and h2 using Eq. (24)
11: if nonlinear constraints exist then
12: number of nonlinear constraints¼m
13: for each m do
14: form h(2þm) using Eq. (28)
15: Minimize f subjected to h1¼ 0,..., h(2þm)¼ 0, g� 0
16: Minimize F by Lagrange Multipliers
17: F ¼ �f � k1h1 � :::� kðmþ2Þhðmþ2Þ � lg
18: Take partial derivatives of F with respect to a2,...,

a(8�n), k1,..., k(2þm) to form a system of Equations along
with Eq. (31),

19: Solve (9� nþm) equations
20: Compute dyad parameters

7 Examples

Now we present two examples, which demonstrate efficacy of
our framework. We do not presume linkage types and determine
best types and dimensions from the task requirements.

7.1 Optimal Solution for Five Positions With No Exact
Solution. Table 1 contains five precision poses as the input to the
classic Burmester problem. Unfortunately for this problem, no
exact planar four-bar solutions of any type exist. Thus, only
approximate solutions can be computed by relaxing some of the
constraints. Our previous approach in Ref. [10] fails to find exact
or approximate solution for this problem because SVD cannot find
approximate solutions for fully constrained problem. The new
algorithm presented in this paper can deal with such problems. If
the first and last poses are critical, algorithm can treat in-between
poses to be approximate. However, when one exact constraint is
relaxed, solution space increases by 11 along with number of
optimization variables ai. Thus, the recommended approach is to
relax as few constraints as possible to keep the optimization com-
putationally cheaper. Hence, third precision pose is relaxed.

Now redefined task is to find a four-bar that interpolates four
precision poses exactly and approximates third pose as closely as
possible. The sense of approximation here is termed as algebraic
fitting error of pose and constraint manifold of each dyad. First
step is the algebraic fitting of geometric constraints, which in this
case are first two and last two poses. Therefore, matrix [A] of size
4� 8 is formed using Eq. (19) and four singular vectors corre-
sponding to near-zero singular values are obtained by SVD, which

Table 1 Example 7.1: pose data

Poses X Y / (deg)

Pose 1 �5.74803 �0.00787402 88.5679
Pose 2 �4.12598 0.795276 2.16642
Pose 3 �2.72441 1.67717 356.968
Pose 4 �1.54331 0.433071 1.03102
Pose 5 1.22835 �0.590551 345.624
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are tabulated in Table 2. None of these singular vectors corre-
spond to a mechanical dyad as they do not satisfy conditions in
Eq. (5).

The error function is formed using Eq. (8), which evaluates
algebraic fitting error of third pose. For a pose, the algebraic error
is given by Eq. (22). Thus, the error function is

f ¼ 0:224ð�1þ 0:675a2 � 0:369a3 þ 2:299a4Þ (34)

Since there are no nonlinear geometric constraints, f is subjected
to two equality constraints h1 and h2 given by

h1 ¼ 0:20� 0:373a2 � 0:045a3 þ 0:46a2a4

þ 0:13a3a4 � 0:33a4 þ 0:15a2
2 þ 0:011a2

3

� 0:0095a2a3 � 0:16a2
4 (35)

h2 ¼ �0:13þ 0:31a2 þ 0:10a3 � 0:44a4

� 0:22a2
2 � 0:013a2

3 þ 0:39a2a4 � 0:079a2a3

� 0:11a3a4 þ 0:0067a2
4 (36)

Using steps presented in Sec. 6.2, we form F given by

F ¼ �f 2 � k1h1 � k2h2 (37)

and system of equations by partial differentiation given by

@

@a2

Fð Þ ¼ a2 �0:31k1 þ 0:43k2 � 0:046ð Þ þ a3ð0:0095k1

þ 0:079k2 þ 0:025Þ � 0:46a4k1 � 0:39a4k2

� 0:16a4 þ 0:37k1 � 0:31k2 þ 0:068 ¼ 0 (38)

@

@a3

Fð Þ ¼ a2 0:0095k1 þ 0:079k2 þ 0:025ð Þ

þ a3 �0:021k1þ0:026k2 � 0:014ð Þ � 0:13a4k1

þ 0:10a4k2þ0:086a4 þ 0:045k1 � 0:10k2 � 0:037 ¼ 0

(39)

@

@a4

Fð Þ ¼ � 0:32k1a4 � 0:013k2a4 � 0:53a4 þ 0:33k1

þ a2 �0:46k1 � 0:39k2 � 0:16ð Þ þ a3 �0:13k1þ0:10k2ð
þ 0:086Þ þ 0:44k2 þ 0:23 ¼ 0 (40)

@

@k1

Fð Þ ¼ �0:20þ 0:37a2 þ 0:044a3 þ 0:33a4

� 0:15a2
2 � 0:011a2

3 � 0:46a2a4

þ 0:0094a2a3 � 0:13a3a4 þ 0:16a2
4 ¼ 0 (41)

@

@k2

Fð Þ ¼ 0:13� 0:31a2 � 0:10a3 þ 0:44a4

þ 0:22a2
2 þ 0:012a2

3 � 0:39a2a4

þ 0:078a2a3 þ 0:10a3a4 � 0:01a2
4 ¼ 0 (42)

Solving this system of equations using Mathematica’s NSolve
routine produces two sets of real solutions given by

a2 ¼ 0:502; a3 ¼ �1:79; a4 ¼ �2:47

a2 ¼ 1:20; a3 ¼ �0:505; a4 ¼ 0:997
(43)

Dyad vectors are computed by substituting these solutions in
Eq. (21). Table 3 contains these two dyad vectors. The four-bar
linkages obtained by assembling these two dyads with coupler are
shown in Fig. 1, where we can clearly see that coupler approxi-
mates third pose while interpolating remaining poses.

7.2 Optimal Linkage for Four Precision Poses With
Region Constraint. Figure 2 shows five positions of a landing
gear moving from the landing position to the retracted position.
Table 4 contains position and orientation data for five poses. It is
desirable that fixed pivots should lie inside the circle of radius 2.3
with center located at (3.33, 2.04). The task is to synthesize a
mechanism, which interpolates through precision poses (1, 2, 4, 5)
and minimizes the algebraic error for the third pose while keeping
fixed pivot locations inside the allowed region as shown in the
figure.

First step is to extract all four geometric constraints, i.e., four
precision poses and form matrix [A] using Eq. (19). Here, n¼ 4,

Table 2 Example 7.1: four singular vectors obtained after SVD of the matrix [A] of size 4 3 8

Dyad vector p1 p2 p3 p4 p5 p6 p7 p8

p1 �0.01874 �0.2516 0.5174 �0.3985 0.02237 0.03616 0.4980 0.5097
p2 0.007703 0.4284 �0.3233 0.5047 �0.02227 �0.06264 0.4823 0.4688
p3 0.02871 0.08073 0.1114 0.1484 �0.0120 0.9778 �0.03979 0.01384
p4 0.07561 �0.1628 0.02429 0.1901 0.9647 �0.009039 �0.007750 0.01223

Table 3 Example 7.1: two optimum dyad vectors obtained as result of optimization

Vector p1 p2 p3 p4 p5 p6 p7 p8

s1 0.4175 1.025 5.818 1.388 0.8691 17.21 7.760 8.773
s2 0.08080 0.007451 0.07404 0.3656 0.9573 0.2468 0.4554 0.4875

Fig. 1 Example 7.1: optimal four-bar mechanism that mini-
mizes algebraic fitting error for third pose. Although second
pose lies on different circuit, this Grashof type four-bar pro-
duces desired continuous motion from first to last pose.
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which means solution space consists of four singular vectors,
which are obtained using SVD and tabulated in Table 5. Once this
linear algebraic fitting is done, optimization problem can be
formulated.

The error function is linear error function f1 for third pose,
which is evaluated using Eq. (22). Substituting singular vectors
into dyad coefficients followed by substituting them in terms of ai

using Eq. (21), we get final objective function given by:

f ¼ f 2
1 (44)

where f1¼�0.0598a2þ 0.0294a3� 0.100a4þ 0.0876. The circu-
lar region for fixed pivots is modeled as an inequality constraint
using Eqs. (25) and (26) given by:

g ¼ 0:091a2
2 þ ð0:25a3 þ 0:11a4 þ 0:25Þa2

þ 0:35a2
3 þ 0:049a2

4 þ a3ð0:043a4 þ 1:0Þ
� 0:048a4 � 0:19 � 0 (45)

Objective function also has two quadratic equality constraints
given by

h1 ¼ 0:058a2
2 þ ð�0:25a3 þ 0:17a4 � 0:36Þa2 � 0:34a2

3

�0:041a2
4 þ a3ð0:23a4 � 0:38Þ � 0:033a4 þ 0:29

h2 ¼ �0:29a2
2 þ a2ð�0:15a3 � 0:074a4 � 0:048Þ þ 0:20a2

3

þa3ð0:18a4 þ 0:12Þ � 0:46a2
4 � 0:11a4 � 0:36 (46)

We follow steps presented in Sec. 6.2 and form Lagrange objec-
tive function F given by:

F ¼ �f 2
1 � k1h1 � k2h2 � lg (47)

and obtain equations by partial differentiation as well as equation
corresponding to Karush–Kuhn–Tucker condition as follows:

@

@a2

Fð Þ ¼ 0 ¼ �0:12a2 þ 0:25a3 � 0:17a4 þ 0:36ð Þk1 þ ð0:57a2

þ 0:15a3 þ 0:074a4 þ 0:048Þk2 � 0:18a2ð Þl
� 0:25a3ð Þl� 0:11a4ð Þl� 0:25lþ 0:060 (48)

@

@a3

Fð Þ ¼ 0 ¼ k1 0:25a2 þ 0:69a3 � 0:23a4 þ 0:38ð Þ þ k2

� 0:15a2 � 0:41a3 � 0:18a4 � 0:12ð Þ � 0:25a2l

�0:71a3l� 0:043a4l� 1:0l� 0:029 (49)

@

@a4

Fð Þ ¼ 0 ¼ k1 �0:17a2 � 0:23a3 þ 0:081a4 þ 0:033ð Þ

þ k2 0:074a2 � 0:18a3 þ 0:92a4 þ 0:11ð Þ � 0:11a2l

� 0:043a3l� 0:097a4lþ 0:048lþ 0:10 (50)

@

@k1

Fð Þ¼ 0¼�0:058a2
2þ 0:25a3�0:17a4þ0:36ð Þa2

þ0:34a2
3þ0:041a2

4þa3 0:38�0:23a4ð Þþ0:033a4�0:29

(51)

@

@k2

Fð Þ¼ 0¼ 0:29a2
2þ 0:15a3þ0:074a4þ0:048ð Þa2

�0:20a2
3þ0:46a2

4þa3 �0:18a4�0:12ð Þþ0:11a4þ0:36

(52)

l
@

@l
Fð Þ ¼ 0 ¼ l �0:091a2

2 þ �0:25a3 � 0:11a4 � 0:25ð Þa2

�

� 0:35a2
3 � 0:049a2

4 þ a3 �0:043a4 � 1:0ð Þ
þ 0:048a4 þ 0:19Þ (53)

Solving these equations followed by filtering on the basis of
feasibility using Eq. (32) yields four unique and feasible solutions
tabulated in Table 6. All of these solutions satisfy
Karush–Kuhn–Tucker condition for optimality given by Eq. (33).

Fig. 2 Example 7.2: five landing gear positions are shown
where the third position can be relaxed. Allowed region for
fixed pivots of mechanism is also shown.

Table 4 Example 7.2: pose data

Poses X Y / (deg)

Pose 1 �0.0125 �0.0374 66.3
Pose 2 0.303 0.634 35.5
Pose 3 0.599 1.83 352
Pose 4 0.268 2.30 331
Pose 5 0.606 1.31 22.2

Table 5 Example 7.2: four singular vectors obtained after SVD of the matrix [A] of size 4 3 8. The vectors form basis for the null
space.

Vector p1 p2 p3 p4 p5 p6 p7 p8

p1 �0.585 �0.0211 �0.506 0.165 0.134 �0.350 0.368 0.313
p2 0.0640 �0.330 0.190 �0.804 0.236 �0.264 0.194 0.204
p3 �0.280 0.0484 �0.466 �0.398 0.232 0.603 �0.136 �0.329
p4 �0.137 0.145 0.469 0.250 0.747 0.229 0.259 0.0111

Table 6 Real solutions for ai, ki, and l

Dyad a1 a2 a3 a4 k1 k2 l

s1 1 �0.40 �0.027 1.09 0.0 0.0 0.0
s2 1 �2.04 �1.81 2.06 0.0 0.0 0.0
s3 1 �3.64 �4.24 5.37 0.0 0.0 0.0
s4 1 5.08 �2.58 �2.94 0.0 0.0 0.0
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Dyad vectors are calculated by substituting these solutions into
Eq. (21) and are given in Table 7. Any of these four dyad vectors
when substituted in Eq. (4) forms a quartic equation, which
when projected on hyperplane Z4¼ 1 represents a quadric surface.
Figure 3 shows intersection of hyperboloid and hyperbolic para-
boloid formed from first and second dyad vectors. The intersec-
tion curve represents workspace of the corresponding four-bar
linkage. Table 8 contains the minimized algebraic fitting error of
objective function. From this table, we can see that dyad s4 has
least pose fitting error. All dyads except s1 are of RR type dyads
while s1 is an RP dyad. Figure 4 shows a branch defect free four-
bar mechanism formed by combining s1 and s2.

8 Conclusion

In this paper, we presented a task-driven approach to unified
and optimal synthesis of planar four-bar linkages for extended
Burmester problem. In this formulation, various geometric con-
straints are treated equivalently, which in turn leads to a much
simpler two-step based algorithm for computing planar dyads of
four-bar linkages. Original contributions of this paper have been
into reforming a mixed exact-approximate algebraic fitting prob-
lem into problem of task oriented optimal fitting of algebraic
manifold. The framework presented here can accommodate linear
as well as nonlinear equality and inequality geometric constraints
and minimize objective functions that can be expressed in terms
of dyadic parameters. Although adding nonlinear geometric con-
straints increase computational complexity, computer algebra
software like MATHEMATICA could be used to compute solutions of
quadratic system of equations in a reasonable amount of time.
Experimentations show that MATHEMATICA takes less than 3 s on a
MacBook Pro with 2.4 GHz Intel core i5 processor and 8 GB
RAM for computing solutions for the system of seven quadratic
equations. The framework also preserves previously achieved
real-time solutions for linear geometric constraints with no opti-
mality criterion. Two examples demonstrating computation of
optimal type and dimensions of dyads that minimize task oriented
objective function are presented.
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