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Computational methods for kinematic synthesis of mechanisms for motion generation prob-
lems require input in the form of precision positions. Given the highly nonlinear nature of the
problem, solutions to these methods are overly sensitive to the input—a small perturbation to
even a single position of a given motion can change the topology and dimensions of the syn-
thesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of
maneuvering precision positions in the hope of finding good solutions. In this paper, we
present a deep-learning-based framework which manages the uncertain user input and pro-
vides the user with a higher level control of the design process. The framework also imputes
the input with missing information required by the computational algorithms. The approach
starts by learning the probability distribution of possible linkage parameters with a deep gen-
erative modeling technique, called variational auto encoder (VAE). This facilitates capturing
salient features of the user input and relating them with possible linkage parameters. Then,
input samples resembling the inferred salient features are generated and fed to the computa-
tional methods of kinematic synthesis. The framework postprocesses the solutions and
presents the concepts to the user along with a handle to visualize the variants of each
concept. We define this approach as variational synthesis of mechanisms. In addition, we
also present an alternate end-to-end deep neural network architecture for variational synth-
esis of linkages. This end-to-end architecture is a conditional-VAE, which approximates the
conditional distribution of linkage parameters with respect to a coupler trajectory distribu-
tion. The outcome is a probability distribution of kinematic linkages for an unknown coupler
path or motion. This framework functions as a bridge between the current state of the art
theoretical and computational kinematic methods and machine learning to enable designers
to create practical mechanism design solutions. [DOI: 10.1115/1.4044396]

Keywords: human machine collaboration, deep generative models, path synthesis, motion
synthesis, planar linkage synthesis, machine learning (ML) for user experience, ML for
managing uncertainties, ML for computational creativity, deep learning, computational
kinematics, conceptual design, creativity and concept generation, mechanism synthesis

1 Introduction
A mechanism is defined to be a collection of rigid bodies con-

nected together by joints such as hinges or sliders in order to gen-
erate articulated motions. Kinematic synthesis of the mechanism
deals with computing type and dimension of mechanisms that are
useful for a particular task. Depending upon the task, synthesis
problems have mainly been divided into three categories: (1) func-
tion generation, (2) path generation, and (3) motion generation. The
function generation task demands a prescribed relationship between
the rotation of input and output links of the mechanism. In the path
generation task, the aim is to move an object through space along a
prescribed path, whereas in motion generation, a rigid body needs to
be guided along a prescribed motion. Hereinafter, motion is termed
as a continuous sequence of poses, where a pose is a combination of
position and orientation. The theory of mechanism synthesis has
witnessed vast research in four decades, resulting in various
methods for solving the above problems; see Refs. [1–6].
Methods for mechanism synthesis start with taking input in the
form of a sequence of path-points, poses, or functional input–
output relationship from the user. A large majority of motion and

path generation methods take the precision point/pose approach,
which optimally minimizes the least squared fitting error between
precision points/pose and coupler curve/motion. This approach is
highly susceptible to input precision points/poses and in most of
the cases results in solutions with circuit or branch defects [7].
The root cause of sensitivity is in the underlying nature of the inter-
polation problem and highly nonlinear relationship between the
input and the output.
To illustrate this chaotic nature, let us consider the following

example. Six poses are sampled from a four-bar linkage as shown
in the left of Fig. 1. As the poses are already known to lie on the
coupler motion, our motion generator algorithm [8,9] obtains the
original four-bar as expected. However, even a small change in
the orientation of a pose results in an entirely different linkage suf-
fering from branch defect, therefore making it unsuitable to perform
the function. Moreover, increasing the number of positions by
means of a B-spline interpolation through original poses does not
help as shown in the right-most of Fig. 1. It is important to note
that the algorithm [8] used for synthesis in the example is a repre-
sentative of the methods based on the precision point approach.
In the real world, when a user inputs a sequence and receives a
result not suitable for the application, no informed decisions can
be made to rectify the situation. What adds more uncertainty to
the problem is that the task is often an approximation of the design-
er’s intended motion. To accommodate this uncertainty, a common
approach is to randomly perturb some of the poses within a given
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tolerance. The probability of a random perturbation to find a valid
input reduces exponentially with the number of precision positions
as well as the tolerance range.
To perform informed and meaningful input modification, it is

necessary to possess knowledge about the properties of coupler
motions (or paths) of planar linkages. Let us define this knowledge
as a prior probability distribution. In Bayesian statistical inference,
a prior probability distribution, often simply called the prior, of an
uncertain quantity is the probability distribution that would express
one’s beliefs about this quantity before some evidence is taken into
account.
While the sensitivity to the input has been a problem to finding

good solutions, it turns out that we can exploit the susceptibility
of synthesis algorithms by providing them with a variety of precon-
ditioned inputs so as to find a diverse range of defect-free solutions.
By providing tools that can provide the designer with higher level
control on input specification, we can help them be more creative
as well.
This paper presents such a framework, which acts as an interme-

diary between designer and computational solvers. The framework
captures the salient features in the task given by the user and com-
putes a variety of conditioned inputs for computational solvers. The
inputs are conditioned so that the likelihood of getting a good solu-
tion is maximized. In addition to the conditioning, the framework
also incorporates missing information required by computational
solvers. Lastly, the outputs are postprocessed and the designer is
presented with a set of distributions of solutions, where each set
consists of a concept with different variations. We define this
approach, where the input uncertainty is intelligently managed to
generate a distribution of solutions as variational synthesis of mech-
anisms. To demonstrate the efficacy of our approach, later on in this
paper, we have presented solutions for the path generation problem
using our motion generation solver as used in the example presented
in Fig. 1. In the absence of using this approach, the solver would
mostly produce impractical and defective solutions for general
motion problems with a large number of poses. Thus, we have
shown the effectiveness of the conditioning and input imputation
by constructing valid motions from a crude input of path points.
It should be noted that the main idea of the paper is not in
solving the path generation problem using motion generation
solvers but to introduce the idea of an intermediary that handles
users’ incomplete and uncertain input and communicates the neces-
sary numerical subtlety to a generic, susceptible computational
solver. The paper also presents an end-to-end deep neural
network architecture, which approximates the conditional distribu-
tion of linkages on task parameters. The task parameters can be a
coupler motion, path, or any other desired linkage property.
To accomplish the aforementioned goals, we employ a recently

developed deep generative model called variational auto encoder
(VAE) [10]. VAE comprises of two neural networks: (1)

recognition model (also called, encoder) and (2) generative model
(also called, decoder). The recognition model applies the learned
prior probability distribution on observed input, thus acting as a
posterior inference model. Additional benefits of using VAE are
that the learned posterior inference model can also be used for a
host of tasks such as denoising, representation, and visualization.
This paper presents two classes of VAEs, which collectively con-

stitute the ML Intermediary. The first class is trained only on the
coupler trajectories, which emphasizes representation learning of
coupler paths (or motions) for conditioning target task paths (or
motions). The second class is trained to learn the distributions of
mechanisms in order to recognize their salient features, which is
used for concept identification and clustering. This also leads to
the generation of a set of diverse mechanism design concepts. An
overall view of the approach is depicted in Fig. 2, which will be dis-
cussed in detail in later sections.
Another motivation behind this work is to understand the distri-

bution of planar one degree-of-freedom (1-DOF) coupler motions
generated by various planar linkages. This will enable us to find
connections between different instances of synthesis problems
and form a conception of the problem in general. This conception
will enable us to answer the following questions: (1) given a path
or a motion task, how likely it is that a particular mechanism type
can perform the task, (2) for a given task, what is the distribution
of linkage parameters with similar coupler motions (or paths), and
(3) given a set of linkages, how to cluster the linkages into different
design concepts. Although our approach can work with any number
and type of linkages, we have implemented the methods for three
types of planar mechanisms: (1) four-bar with all revolute joints,
(2) slider-crank, and (3) Stephenson six-bar linkages.
The original contributions of the paper are in creation of (1) an

end-to-end synthesis framework that accepts raw, high-level input
from users and provides them with distinct concept solutions and
(2) an approach using state-of-the-art deep generative models that
learn the joint probability distribution of various linkage parameters
and their interdependence to perform tasks such as input condition-
ing, imputation, and variational synthesis. In doing so, we leverage
the emerging machine learning (ML) techniques to learn meaning-
ful representations and combine them with simultaneous type and
dimensional methods of kinematic synthesis [9] to enhance users’
computational creativity.
Rest of this paper is organized as follows. Section 2.1 reviews

background work and our previously developed motion generation
solver [8,9], which is used as a representative of computational
solvers and their issues. Section 3 presents the motivation behind
using the deep generative models along with the theory behind it.
Section 4 presents applications of VAE and conditional-variational
auto encoder (C-VAE) to condition the input for the path and
motion generation problem by learning the joint probability distri-
bution of planar one DOF trajectories. Two examples are presented

Fig. 1 Slightly different inputs result in entirely different mechanisms. The input on the left gen-
erates a defect-free four-bar linkage. The input in the middle is formed by perturbing the orienta-
tion of the fourth pose by 15 deg. The dashed frame in the middle input represents the original
unaltered pose. Increasing the number of poses does not help either as shown by themechanism
generated on the right.
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to showcase the recognition and variational generative capabilities
of VAE. Section 5 explains how VAE can be used to recognize
and cluster similar linkages. This section also presents a generative
way of learning end-to-end synthesis for planar linkages using
C-VAE. A sample of end-to-end variational synthesis using pure
deep learning is depicted. Section 4.5 showcases an example inter-
action between a user and the intermediary which takes crude user
input to return distinct concept solutions. The user can visualize and
control which features to pass to the generator for motion genera-
tion, in contrast, to complete black-box approaches that use
neural networks.

2 Background and Review
Applications of powerful function approximators like neural net-

works are not new to the domain of mechanism synthesis. Vasiliu
and Yannou [11] have used artificial neural network (ANN) to inter-
polate the map between the path and link lengths for Grashof
four-bar linkages with revolute joints. However, they have utilized
ANNs mainly to memorize the mapping as a means to replace an
atlas. Khan et al. [12] presented an approach where an ANN is
used for mapping between Fourier coefficients corresponding to a
coupler path and corresponding linkage parameters. Galan-Marin
et al. [13] have used a similar approach instead of using Fourier
coefficients, and they have used wavelet descriptors to represent
the shape of the path. All of the above methods use ANNs just as
a mapping tool from a closed coupler path to mechanism link
ratios. In contrast to the black-box mapping approach of the
above methods, we facilitate user interaction with the network by
means of interactive manipulation of latent space. The approach
taken by our methods is unsupervised and semi-supervised learning,
with an emphasis on representation learning and understanding
users’ intentions.
Our previous approach [14] to capturing designers’ intent by con-

sidering the continuity between precision poses results in defect-
free linkages; however, this requires expensive database queries
at the run time. The approach presented in this paper relies on
models trained on those datasets and provides instantaneous
response to the user at the run time. Moreover, this paper presents
a comprehensive and unified approach to mechanism design solu-
tion generation and input rectification using VAEs and C-VAEs.
In contrast to the neural network approach, some researchers

have attempted to solve this problem using traditional kinematic
methods. For example, in case of the path generation problem,

Ullah and Kota [15] and Wu et al. [16] have tried to incorporate
the prior on user input by means of finding lower harmonic
Fourier descriptors of the path followed by computing link dimen-
sions using optimization methods. Li et al. [17] have developed a
Fourier descriptor-based approach for approximate motion genera-
tion, which uses the same prior on the coupler path. These methods
are relatively robust to spatial variations in input but susceptible to
variations in timing information provided by the user. Sharma et al.
[18] have addressed this issue to some extent by providing a scheme
to compute optimal timing for the input points. Sharma et al. [19]
have presented a method for motion synthesis by exploiting the
Fourier descriptor relationship between path and orientation data.
However, the above methods are only defined for the synthesis of
four-bar linkages with revolute joints.
On the other hand, our approach is general enough to condition

any type of user input such as precision points, pivot regions, or
timing of the precision points and scales to higher-order linkage
mechanisms and spatial robots. A key difference in the previous
approaches and our approach is that the conditioning on the input
is performed by learning the joint probability distribution of input
parameters from a database of linkages instead of relying on the
fact that four-bar linkages produce curves which have specific har-
monic content. In the absence of this knowledge for higher-order
linkages, it is difficult to scale those approaches. The end-to-end
synthesis framework is based on a conditional-VAE with the
coupler curves as predicates. This does not require an existing com-
putational solver.

2.1 Review of an Algebraic Fitting Algorithm for the
Motion Generation Problem. In this section, we review a compu-
tational solver for the motion generation problem. In Refs. [8,9], we
have presented a novel and efficient algorithm for computing type
and dimensions of four-bar linkages with revolute and prismatic
joints for the motion generation problem. The motion generation
problem requires a coupler link to pass through n poses as close
as possible. In cases where n> 5, the motion can only be approxi-
mated in general. According to the problem definition, the aim is
to find locations on the coupler link where the ground links of a
four-bar could be attached. Depending upon the link type, the
moving joint of a ground link of four-bar lies on (1) a circle, (2)
a fixed line, (3) a line that is tangent to a fixed circle, or (4) on a
line sliding along a fixed line. Thus, the task turns into finding
the locations of such points on the rigid body that satisfy one of
the four constraints mentioned above. For example, Fig. 3 shows

Fig. 2 Crude input from the user is passed through the recognition model which captures the features based on which various
further actions are determined. The user has the control to override the feature selection by inspecting reformed variational
inputs. These variational inputs are passed to classical synthesis methods like in Refs. [8,9] to generate a multitude of solutions.
Solutions are passed through another recognition and clusteringmodule to present the user with distinct distributions of solution
concepts. In addition, an end-to-end deep generative model is trained that conditions coupler paths to linkage parameter
distributions.
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a rigid body in five precision poses, where points M1 and M2 on the
rigid body are calculated to lie on a circle and a line, respectively.
Once two such points are found on the rigid body, appropriate
ground links can be attached as shown in Fig. 3 to create a
four-bar mechanism.
This is done by solving a set of linear equations using singular

value decomposition followed by a quartic equation. This method
uses a unified formulation of all types of geometric constraints
found in planar four-bar mechanisms, which in turn results in a
unified approach to simultaneous type and dimensional synthesis
of mechanisms. We have also developed a software application
that implements this algorithm [20]. We use this application for
generating some of the figures for the linkages synthesized in this
paper.

3 Generative Model of Linkage Parameters
In this section, we present a generative model of linkage mecha-

nisms, which should have an ability to understand salient aspects of
the linkage parameters and to create diverse design concepts for a
given task.
A generative model is based on a generative learning principal,

which does not just passively observe the events it experiences
but constructs its own perceptions about them. For example, train-
ing a generative model for coupler curves of the four-bar linkage
formulates an understanding of the kind of curves a four-bar
linkage can or cannot generate. This understanding is useful in
various tasks such as input denoising, modification, or imputation.
Here, input imputation is defined as the process of adding the
missing information in the input which is necessary for the solver
to process. Generative models encapsulate the salient information
about the observed data which is essential for tasks involving recog-
nition, representation, and computational creativity. In this work,
we have used VAE [10] as our generative modeling framework.
The parameters of generative models are much less in number
than that of the data it is trained on. Thus, the model is forced to
capture salient attributes and their variation in order to generate
the data similar to it. This encapsulation of salient features is utilized
in tasks that require an understanding of the data. In our case, we use
it in providing the user a high-level control on manipulating differ-
ent aspects of input data and to manage input uncertainties.

3.1 Theory of Variational Auto Encoders. VAE [10] is a
neural network architecture that learns to approximate the true dis-
tribution of an observed data X. In this work, different models of
VAE are trained to learn different observed data, thus X can repre-
sent different quantities for different VAEs. Depending upon the
quantity that X represents, X can have different dimensions. For
example, if a VAE is trained on coupler path dataset, then X

represents coupler paths and will be denoted by Xpath. Whereas, if
VAE is trained on coupler motions or entire four-bar entire link-
ages, then X would represent coupler motions (Xmotion) and
four-bar linkages (Xfourbar), respectively. Figure 4 shows a general
architecture of VAE. In this architecture, the recognition model
encodes the data into probability distribution of latent variables,
while the generative model is responsible for generating new data
or reproducing trained data. In this figure, there are two hidden
layers h1 and h2 in the recognition model, while the generative
model has one hidden layer h3. In the middle, there is feature
space encoded by the variable z, which seeks to capture the
essence of the input data. However, as opposed to an auto
encoder architecture in which z is a discrete variable, in the VAE,
the z is determined via a probability density function.
Let us assume that the d-dimensional data X is highly structured

and occupies a much smaller k dimensional space. We know that a k
dimensional unit Gaussian distribution can be mapped into any
k-dimensional distribution through a nonlinear mapping. In other
words, it can be said that the data are generated by some natural
process that maps a k dimensional variable z to d-dimensional var-
iable X. We try to mimic this process with an unknown parametric
generative model based on hidden variable z, given that the proba-
bility distribution of z is unit Gaussian.

pr(z) =N (0, 1) (1)

X = G(z; θg) (2)

where θg are weight parameters of the neural network that acts as the
generative model. The variable z is called latent variable, which
contains salient information of the observed variable X. We
would like to infer salient attributes z based on observed X, which

Fig. 3 The figure on the left depicts five poses of the rigid body with two points M1 andM2 on the
rigid body tracing a circle and a line. Revolute–revolute (RR) and prismatic–revolute (PR) links
are connected to M1 and M2, respectively, to form a slider-crank mechanism.

Fig. 4 Recognition model encodes the observed data X into
probabilistic latent coding z of dimension much smaller than X.
In this case, we assume a multivariate Gaussian distribution
for z. Generative model takes samples from this distribution to
generate output X̂.
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can be expressed by conditional probability pr(z|X )

pr(z|X) = pr(X|z)pr(z)
pr(X)

(3)

where the abbreviation pr(A) represents the probability of vari-
able A. Unfortunately, computing probability of X (i.e., pr(X))
is usually intractable. It involves computing the integral�
pr(X|z)pr(z)dz. However, we can apply variational inference [21]
to estimate the joint probability distribution pr(z|X ).We approximate
pr(z|X ) by a distribution q(z|X ), which we define such that it can be
computed by a neural network Q.

μ, σ = Q(X; θe) (4)

q(z|X) =N (μ, σ) (5)

Here, N (μ, σ) is a multivariate Gaussian distribution function with
mean μ and variance σ. Now, we want to find parameters of the rec-
ognitionmodelQ(X ) that predict the distribution q(z|X ) such that it is
very similar to pr(z|X ). Then, we can use it to perform approximate
inference of the intractable distribution.
The objective is to find parameters θg and θe of G(z) and Q(X ),

respectively, such that our model generates samples as close as
the true observed distribution and distribution q(z|X ) is as close
as the true distribution p(z). This is achieved by training the
neural network models for maximizing the lower bound of marginal
likelihood, which is given by

L(Xi) = EQ(z|Xi ;θe)( log (p(X
i|z))) − DKL(Q(z|Xi; θe)‖p(z)) (6)

Here, the first term on RHS represents reconstruction likelihood and
the second term is called Kullback–Leibler divergence (KL diver-
gence) [22] which ensures that our learned distribution Q(z|X; θe)
is similar to the true prior distribution p(z). Since we assume that
p(z) is a Gaussian distribution, the lower bound of marginal likeli-
hood becomes

L(Xi) = −(X̂i − Xi)2 −
∑k
i

σi
2 + μi

2 − log (σi) − 1

( )
(7)

The training objective is given by

argmin
θe ,θg

(−L(Xi)) (8)

For further details, please see Ref. [10].
Once entire VAE is trained, the recognition model and the gen-

erative model can be used separately or together depending upon
the application. In what follows, we describe the details of the rec-
ognition and the generator models.

3.2 Recognition Model. The architecture shown in Fig. 4 con-
sists of a recognition model, which is an ANN. The inputs are
passed through dropout [23], which randomly skips a connection
between the input and the first hidden layer with a probability of
0.1. This small amount of uncertainty in the input helps in learning
robust patterns present in the input. The recognition model is com-
posed of hidden layers, which finally produce two zdim dimensional
vectors representing mean and variance of latent attribute z. The
hidden layers can be convolutional layers or fully connected
layers depending upon the nature of observed data. Convolutional
layers are often the preferred choice when dealing with images.
This is due to the nature of convolution operation which connects
only the neighboring neurons to capture the local pattern. This
works well in the case of images since pixels far away from each
other may not be correlated. However, no such assumption is
being made in the case of vectors representing kinematic quantities.
Thus, this work uses fully connected layers. Each hidden layer is
passed through a rectified linear (ReLU) activation function.

ReLu function is given by

ReLU(x) =max (0, x) (9)

Output of the recognition model is a multivariate probability distri-
bution of latent variable, which captures the salient attributes of the
data. Random samples drawn from this distribution are passed to a
generator network. In the case of training via back-propagation
algorithm, gradients are passed from the generator to the recogni-
tion model by means of reparameterization trick [10]. The recogni-
tion model effectively captures the approximate posterior inference
(pr(z|X )) of the input data and thus can be used for tasks such as rec-
ognition, denoising, representation, and visualization purposes. In
Sec. 4.2, we showcase various tasks performed using recognition.

3.3 Generator Model. Parameters of this neural network are
learned to map a latent vector to a reconstruction, which would
exhibit similar latent attributes if passed through the recognition
network. Thus, the generative model can generate data whose prob-
ability distribution is similar to that of training data. The architec-
ture of this model starts with an input layer which receives latent
vector and passes through single or multiple layers of neurons cul-
minating into the original size of observed data. The middle layers
can be deconvolutional or fully connected layers which upscale the
input they receive from the previous layer. Instead of ReLu, we
apply a leaky ReLU activation function which prevents the gradient
from becoming zero which can hinder training and is known to
work better for generative networks [24]. Leaky ReLu is given by

ReLU(x) =max (αx, x) (10)

where α is a small constant, which we take to be 0.001.

3.4 Variants of Variational Auto Encoder

3.4.1 Denoising Variational Auto Encoder. VAE networks
can be used to remove noise from input data. This is done by
adding noise to the input data while training. However, the genera-
tor is forced to produce original noise-free samples by defining the
reconstruction loss between reconstructed image and original noise-
free image. This forces the recognition network to encode robust
features from the data.

3.4.2 Conditional Variational Auto Encoder. Until now, we
have seen VAE with unsupervised learning architectures, i.e.,
which requires unlabeled data for training. C-VAEs are trained to
learn the conditional distribution of an observed variable with
respect to an explicitly observed property (or label) Y. This is
achieved by small modification in vanilla VAE. Instead of only pro-
viding with observed data, the recognition network accepts concat-
enated input of X and Y. Moreover, the generator also receives a
concatenated input of z and Y. This grants VAE additional informa-
tion for the variational inference task. This can be used to generate
samples which are highly associated with the given Y at the time of
generation.

4 Variational Auto Encoder for Coupler Trajectories
In this section, we present the implementation of VAE for

coupler path and motion databases. First, consider a database of
coupler paths formed by planar linkages. Each coupler path is an
ordered collection of m points sampled uniformly throughout the
entire rotation of the crank, where each point has x and y coordi-
nates. Thus, total observation dataset D of N data points is given
by D = {Xi}

N
i=1, where each Xi is {xj, yj}mj=1 for path and

{xj, yj, θj}mj=1 for motion data.

4.1 Variational Auto Encoder Training. First, each coupler
trajectory is normalized with respect to scale and position. This is
done by subtracting the means (�x, �y) and dividing by the root
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mean squared variance in Cartesian X- and Y-directions. Next, the
trajectory is rotated such that its principal component axes are
aligned with the coordinate axes. The principal component axes
are the eigenvectors of the Covariance matrix of a point cloud
data that define the trajectory. The covariance matrix C of a point
cloud of m 2D points {xj, yj}mj=1 is given by

C =
Cxx Cxy

Cyx Cyy

[ ]
(11)

where

Cxx =
1
m

∑m
i=1

(xi − �x)(xi − �x) (12)

Cyy =
1
m

∑m
i=1

(yi − �y)(yi − �y) (13)

Cxy = Cyx =
1
m

∑m
i=1

(xi − �x)(yi − �y) (14)

Figure 5 shows the normalization process.
Various datasets of linkages are used to train various architec-

tures of VAE with varying number of latent dimensional size. To
create a dataset of a particular linkage type, a new linkage is con-
structed from a set of linkage parameters. These parameters are
obtained by sampling from a uniform distribution of the practical
range of linkage parameters. The obtained linkage is added to the
dataset if it is sufficiently dissimilar from all the linkages previously
added to the dataset. Here, the measure of dissimilarity between two
linkages is given by a sum of L2 norms between the normalized tra-
jectories traced by all moving points of two linkages. Table 1 pre-
sents the details on various datasets used for training.
Figure 6 depicts training losses for two such architectures with

latent dimension (i.e., the dimension of z vector) 2 and 3. As we
can see in Fig. 6, the model with three-dimensional z vector space
achieves lower reconstruction error with slightly higher KL diver-
gence loss. This result is expected because with an increase in
latent size, the room to capture variation in the data increases.
However, the increase in latent dimension also increases the com-
plexity in visualization, interpretation, and manipulation of latent
attributes in recognition tasks. It is interesting to notice that the
two losses somewhat compete with each other in the training
process. The reconstruction loss pushes the model to capture the

diversity in the dataset, by forcing the generator to be able to recon-
struct every type of data in the dataset. Whereas, KL divergence
forces the latent space to occupy a restrictive distribution and
thereby demanding coherence in the generation.

4.2 Recognition and Generation of Coupler Trajectories.
For training or inference, each data point Xpath is passed through
a recognition model which computes the parameters for multivari-
ate Gaussian distribution of latent vector. In inference, the aim is
to recognize the salient features of the input point cloud. To show-
case the inference functionality, let us input two one-dimensional
point datasets as shown in Fig. 7. Each of the datasets represent
an approximate target path. Now, we would like to infer their
salient features and generate plausible coupler paths having
similar salient features. We take a trained VAE with two-
dimensional z vector trained on closed coupler paths. Each of the
two datasets is passed through a recognition network, which pre-
dicts a 2D Gaussian distribution of latent features for each of the
input. Now, for each case, random samples drawn from the distribu-
tion are passed to the generator network of the VAE, which gener-
ates samples with closed paths that resemble the original input path.

4.3 Interactive Shape Modification With Variational Auto
Encoder. Let us assume a scenario where the user needs to
specify a closed loop target path. Since the synthesis of linkages
is chaotic, it is always fruitful to condition the inputs such that
the probability of finding good linkages is maximized. Moreover,
it is desirable to have a higher level of control on the overall
shape of the target path. We use VAE to accomplish both of the
above tasks. First, raw user input X is passed through the recogni-
tion model as shown in Fig. 7. The recognition model captures
the shape user intends to draw and returns it in the form of latent
feature distribution q(z|X ) as shown in Fig. 7. The VAE generator
takes a sample feature vector zs from q(z|X ) and generates a path
X̂. It should be noted that X̂ is a sample from the distribution p(X|
z) and has more probability of being a path drawn from a
four-bar. As we can see in Fig 7, generated paths follow the user-
defined points and also resemble paths generated by Grashof
four-bar linkages. Moreover, the user can select or modify the zs
interactively based on the variation of its corresponding generated

Fig. 5 Coupler trajectories are normalized with respect to posi-
tion, orientation, and scale. Here, the orientation refers to the ori-
entation of the path.

Table 1 Datasets used for training VAE and CVAE models

Data type Size

Four-bar linkage (Grashof only) 480
Four-bar linkages 2188
Slider-crank linkages (Grashof only) 466
Six-bar Stephenson IIIa linkage (Grashof only) 937
Six-bar Stephenson IIIa linkage 3902

Fig. 6 Reconstruction and KL divergence losses for two archi-
tectures with z dimension 2 and 3. It can be seen that higher
z-dimension enables capturing more variation in the database,
which results in lower reconstruction losses.
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path. Hence, the user has a higher level control on the shape of the
path which improves the experience rather than modifying the input
path point by point. This can be achieved by creating a user inter-
face where the user can see the effects of changing feature vector
z in all possible directions. Figure 8 presents samples created by
the generator for different latent vectors. Here, the user can visualize
where the given curve lies and change its shape by moving across
the plane in 2D. This approach is amenable if the dimensionality
of feature vector z is kept below 4, which indeed is the case for
VAEs trained on coupler paths and motions.

4.4 Type Synthesis Via Recognition. Several VAEs with dif-
ferent architectures are trained on the dataset that comprises of

coupler paths, motions from four-bars, slider-cranks, and
Stephenson-type six-bars. Since the linkages above have a different
topology, their coupler motions should possess some features that
are affected by it. We use the features predicted by the recognition
model of a VAE and train simple linear classifiers to identify their
linkage type. Figure 9 depicts 2D embedding of closed coupler
paths from four-bar (all revolute joints), slider-crank, and Stephen-
son six-bar mechanisms. It can be clearly seen that six-bar coupler
curves cover a wider variety of shapes compared to four-bar link-
ages. Variety covered by slider-crank linkages is the lowest and is
mostly overlapped by a four-bar linkage. The reasoning behind
this observation can be given by the fact that the slider-crank link-
ages are a special case of 4R linkages when the length of the rocker
link and its fixed pivot approach infinity. A classifier trained on such
data can predict the probabilities of a given task being fulfilled by
the corresponding linkage type.

4.5 Example User-Machine Learning Interaction. In this
section, we showcase the application of VAE to solve a path gener-
ation problem using motion generation problem solver. As we have
stated earlier, the ML Intermediary can take crude input from the
user and provide all the necessary information required by the avail-
able solver with computational subtleties. These tasks require VAE

Fig. 7 The raw user input X is passed through a recognition network, which captures the salient information in the form of mul-
tivariate distribution of latent features. Random samples from this distribution are fed to the generator to generate paths with a
high likelihood of producing good solutions. Moreover, users can manipulate the sample location in latent space, which gives
them a low-dimensional and higher level of control on modifying the shape of the path.

Fig. 8 Samples generated from a generator from a two-
dimensional latent vector which is a vertex in the two-
dimensional uniform grid with limits shown in corners. It can
be seen that samples generated from neighboring vertices are
highly correlated, which gives away the indication that recogni-
tion network learns the salient information about the shape of
coupler curves.

Fig. 9 Visualization of 2D feature embedding obtained by train-
ing a VAE on closed coupler paths of various planar linkages.
The variety in features by means of spread over the space
directly relates to the variety in shape of respective linkage type.
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to capture primitive information provided by raw user input and
generate a set of plausible coupler motions. It is important to note
that since the orientation information required by the motion gener-
ation solver is not provided by the user, it should be computed by
the ML Intermediary. This is done using a C-VAE that is trained
to generate coupler motions (Xmotion) data given its path (Ypath).
The architecture and training scheme for the C-VAE follows the
discussion presented in Sec. 3.4. We use our computational
methods [8,9] for solving the motion generation problem in real
time. The solutions returned by the solver are fed to the linkage rec-
ognition model of a VAE trained on entire four-bar linkages. This
linkage recognition model computes a compact feature representa-
tion of each linkage on which we apply the K-means [25] clustering
algorithm. The details of linkage recognition and clustering are pre-
sented in Sec. 5. It should be noted that the feature distributions of
linkages produced by a recognition model are in ten-dimensional
space. Thus, the depiction of the latent distribution of linkages
and following clusters as shown in Fig. 10 are only for illustration
purposes. The cluster centers are distinct solution concepts.
Figure 10 depicts the entire procedure from start to finish. The solu-
tions obtained using the proposed approach yield diverse mecha-
nisms with various linkage topologies. In order to juxtapose our
approach with classical approaches, Fig. 10 also depicts the result
obtained using a classical path synthesis method [18] based on
Fourier descriptors. It can be seen that the classical result is
similar to one of the concept solution obtained using variational
synthesis.

5 Variational Auto Encoder for the Entire Linkage
In Sec. 4, we presented applications of VAE for conditioning the

task based on the learned prior from linkage trajectory dataset. This
section presents generative modeling for the entire linkage mecha-
nism which can be used as an alternative approach to the classical
synthesis solvers. Since each linkage type has a different set of
parameters, network architecture would be different for each of
the linkage type. The objective is to train a model that learns condi-
tional probability distribution of linkages given a coupler curve or
motion, which is given by

pr(Xlinkage|Y , z) = Glinkage(z, Y; θg) (15)

z ∼ p(z|Xlinkage, Y), and (16)

pr(z|Xlinkage, Y) ≈ Qlinkage(Xlinkage, Y; θe) (17)

Here, G and Q are generator and recognition models from Eqs. (2)
and (4), which also take an additional input Y. Here, Xlinkage repre-
sents linkage state vector and is discussed next.

5.1 State of the Linkage. C-VAE discussed in Sec. 3.4
requires a tuple (X, Y ) to train, where X is an observed variable
(in this case, the entire linkage) and Y is an observed property or
condition (in this case, the coupler curve). In theory, this formula-
tion should work for any such tuple which has a strong correlation.
We note that simply using the dimensional parameters of the mech-
anism, which describe link length and the fixed pivot locations of a
mechanism, would not be a suitable choice for the vector X as they
would merely describe a set of unrelated and discrete parameters
with no possible meaning associated with them. This demonstrates
that divorcing kinematic knowledge from the ML will not give us
meaningful answers. Instead, we formulate the observed variable
X from the linkage parameters such that it should contain the infor-
mation of the entire simulation of linkage in its current configura-
tion. First, we orient and scale a linkage such that one of its fixed
links has magnitude 1 and is parallel to the Cartesian x-axis. We uni-
formly sample locations of all the points of interest for m crank ori-
entations sampled uniformly throughout the possible range. Next,
we represent these locations in polar coordinates with origin at
fixed pivot corresponding to the crank. Then, these coordinates
are stacked together for all of the m orientations. In the case of
four-bar linkage, we have three points of interest P1, P2, andP3
as shown in Fig. 11. Thus, the state tensor for the four-bar
linkage is given by

Xstate = {rP1, θP1, rP2, θP2, rP3, θP3}mi=1 (18)

where rPj and θPj are the radial and angular coordinates of point Pj.
We flatten this tensor to form a 600-dimensional vector Xfourbar

for a total of 100 orientations of the crank. For a six-bar Stephenson
mechanism, we have a total of six moving pivot joints that we track.

Fig. 10 C-VAE generates coupler motions corresponding to the path input. The orientation information of the generatedmotion is
not shown for cleaner illustrations. The generated motions are fed as inputs for the motion generation problem. The solutions
solved by Ref. [8] are passed through a linkage recognition model which predicts the latent distribution for each solution. This
mixture of distributions is clustered to form distinctive concept distributions. The four-bar linkage in the bottom left corner
depicts the optimal path synthesis solution using Ref. [18].
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In that case, the state tensor for the linkage is given by

Xstate = {rP1, θP1, rP2, θP2, rP3, θP3, rP4, θP4, rP5, θP5, rP6, θP6}mi=1
(19)

The dimension of the state vector Xlinkage of a linkage is equal to 2 ×
m× PoI, where PoI is the number of points of interest for that
linkage.

5.2 Conditional-Variational Auto Encoder Training. As
discussed in Sec. 5.1, Xlinkage has dimensions 2 ×m× PoI.
Whereas, Y is taken as the corresponding coupler path, which has
dimensions 2m. In order to train C-VAE, we pass a batch of X
and Y to the network and compute gradients and losses. The training
results have a similar pattern as presented in Fig. 6. The model
architectures and their training results are tabulated in Table 2,
where P. and M. signify path and motion, respectively. This table
also shows the details of each architecture, such as the number of
neurons in each layer, the number of hidden layers, and the losses.

5.3 Linkage Recognition and Clustering. Consider a set of
M linkages represented by a set of vectors, {Xlinkagei}

M
i=1. Now, it

is useful to find K representative linkages that cover the variety of
obtained solutions, where K is a user-selected parameter. To find
such K representative linkages, we perform K-means [25] clustering
on the set of M linkages, where K< <M. Before performing clus-
tering, we first pass the set through the recognition module to

obtain a compressed representation for the set {(μlinkagei ,
σlinkagei )}

M
i=1 given by

μlinkagei , σlinkagei = Qlinkage(Xlinkagei ; θe) (20)

where Qlinkage is the recognition model of the VAE trained on the
corresponding linkage dataset.
Now, for computing the pairwise distance between two linkages

Xlinkagei and Xlinkagej , we take the L2-norm between their correspond-
ing mean latent vectors μi and μj. Using the L2-norm on latent rep-
resentations instead of L2-norm on the original vectors has shown to
yield better clustering for high dimensional data [26]. This results in
the identification of K clusters and along with the corresponding
cluster centers. Figure 2 shows cluster centers for the recognition
and clustering task for a set of 100 four-bar linkages with K= 4.

5.4 End-to-End Variational Synthesis of Planar Linkages.
C-VAE is trained to map the probability distribution of linkages
to the shape of their corresponding coupler paths. C-VAE-10
takes a 200-dimensional vector Y and a sample from Gaussian dis-
tribution as an input and returns 600-dimensional vector X̂linkage as
output. From this 600 dimensional vector, we take the average loca-
tion of each point of interest and construct the mechanism. This
ensures that each generated sample results in a valid linkage.

Table 2 VAE and C-VAE model architectures (FB= four-bar, SC=slider-crank, SB=six-bar)

Observed data (X ) X Dim Name Encoder Arch. Latent (z) dim Decoder Arch. Y Reconstruction loss KL loss

FB P. 200 VAE-P2 (20) 2 (20) — 11.46 4.33
FB P. 200 VAE-P3 (20) 3 (20) — 9.95 5.48
FB M. 300 VAE-M2 (40) 2 (40) — 21.31 4.23
FB M. 300 VAE-M3 (40) 3 (40) — 13.95 5.81
FB, SC, SB P. 200 VAE-P3 (20) 3 (20) — 16.12 5.34
FB, SC, SB M. 300 VAE-M3 (40) 3 (40) — 18.43 6.45

FB M. 300 C-VAE-M3 (30) 3 (30) 6 points on P. 7.21 2.32
FB, SC, SB M. 300 C-VAE-M3 (30) 3 (30) 10 points on P. 10.13 3.42
FB linkages 600 C-VAE-LF10 (300, 100) 10 (100, 300) P. 11.04 13.20
SB linkages 1200 C-VAE-LS15 (600, 300) 15 (300, 600) P. 13.02 17.34

Fig. 11 A four-bar linkage with the fixed link of unit magnitude
and colinear with X-axis. The polar coordinates of points P1, P2,
and P3 stacked together for m crank orientations constitute the
state representation of the four-bar.

Fig. 12 Sample linkages generated by C-VAE-LF10 when it is
supplied with the conditional coupler curve Y and
10-dimensional Gaussian multivariate z. Architecture of this
C-VAE is presented in Table 2.
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There is no guarantee that generated linkage should resemble the
path Y, but C-VAE is trained to maximize that likelihood. Figures
12 and 13 depict some examples generated by C-VAE when a
unseen coupler curve is passed as Y along with a multivariate
Gaussian with zero mean and unit variance as z in Eq. (15). It is
interesting to see the variations in the linkage parameters generated
by C-VAE.
Combining this model with VAE for coupler trajectory can yield

useful planar linkages with variations, making it an end-to-end deep
learning model for the variational synthesis of planar linkages.

6 Conclusion
In this paper, we have presented a holistic machine learning-

driven approach to the path and motion generation problems. This
approach derives from the existing kinematic knowledge to create
a new framework for mechanism synthesis, which solves problems
that have had no good theoretical underpinning, such as defect-free
generation, conditioning of the input, and contextual concept gener-
ation. Deep learning was used to learn the meaningful representa-
tions of linkage parameters and used in a novel way to enhance
the users’ design experience. Instead of discarding years of research
that lead to the development of state-of-the-art synthesis algorithms,
this framework combines them with deep learning to intelligently
manage uncertainties and provide highly accurate distinct design
solutions. A novel idea of an ML intermediary was introduced,
which communicates between the user and computational algo-
rithms. The intermediary intelligently captures the user’s intention
while managing the input for synthesis algorithms. Finally, it inter-
prets numerous solutions returned by the solver and provides the
user with a distinct distribution of concept solutions.
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