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A Task-Driven Approach to
Unified Synthesis of Planar
Four-Bar Linkages Using
Algebraic Fitting of a Pencil of
G-Manifolds
This paper studies the problem of planar four-bar motion generation from the viewpoint
of extraction of geometric constraints from a given set of planar displacements. Using the
image space of planar displacements, we obtain a class of quadrics, called generalized-
or G-manifolds, with eight linear and homogeneous coefficients as a unified representa-
tion for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP.
Given a set of image points that represent planar displacements, the problem of synthe-
sizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit
the image points in the least squares sense. This least squares problem is solved using
singular value decomposition (SVD). The linear coefficients associated with the smallest
singular values are used to define a pencil of quadrics. Additional constraints on the lin-
ear coefficients are then imposed to obtain a planar four-bar linkage that best guides the
coupler through the given displacements. The result is an efficient and linear algorithm
that naturally extracts the geometric constraints of a motion and leads directly to the
type and dimensions of a mechanism for motion generation. [DOI: 10.1115/1.4035528]

1 Introduction

In this paper, we present a task-driven approach to unified type
and dimensional synthesis of planar four-bar linkage mechanisms.
Planar linkages are the most common form of mechanisms found
in mechanical systems and have been a subject of interest and
research in machine design area for many decades. Some key texts
that describe state of the art as well as established methods and
theory in kinematic synthesis of machines are by McCarthy and
Soh [1], Sandor and Erdman [2], Hunt [3], Hartenberg and Dena-
vit [4], and Suh and Radcliffe [5]. Despite having been a research
topic alive for a long time, various proposed solutions to planar
mechanism design for the approximate motion synthesis have
been nonlinear in nature. In general, the algorithms proposed are
computationally expensive and require dealing with the type and
dimension synthesis separately. In this paper, we follow Wu et al.
[6] and study the problem of planar motion approximation from
the viewpoint of kinematic extraction of geometric constraints
from a given set of planar displacements. Using a kinematic map-
ping of planar kinematics, we propose a general algebraic method
for unified type and dimensional synthesis of planar four-bar link-
ages, which reveals the geometric constraints implicit in the given
motion via a linear, two-step process. The method is fast, efficient,
and provides type and dimensions of the mechanisms, which can
execute that motion. This paper is an extension of our earlier work
on dimensional synthesis of planar 4R linkages [7], wherein our
focus was only on the motions that could be executed by RR
dyads. The main contributions of this work are in (1) presenting a
unified representation for the motion of all possible planar dyads,
and (2) devising a simple linear method for naturally extracting
the constraints hidden in a given motion and matching it with a
four-bar motion without presumption of the type of a linkage. In
addition, we also show via an example as to how the approach for

four-bar linkage synthesis can be applied to six-bar linkages as
well.

The earliest approach to the motion synthesis problem was dealt
with by Burmester [8], who posited that a given four-bar linkage
can go through at most five positions exactly (precision position
synthesis). For a continuous motion or more than five positions,
typically only an approximate motion synthesis can be performed.
For this problem, Ravani and Roth [9,10] proposed a kinematic
mapping approach. Blaschke [11] and Grunwald [12] had given
rise to the concept of kinematic mapping almost a century ago,
but it did not find many practical applications until the work of
Ravani and Roth. A modern treatment of kinematic mapping can
be found in the formative texts of Bottema and Roth [13] and
McCarthy [14]. In the kinematic mapping approach to synthesis,
planar displacements in Cartesian space are mapped into points in
a three-dimensional projective space (called image space of planar
kinematics), while workspace constraints of a mechanism map
into algebraic manifolds (called constraint manifold) in the same
space. In this way, a single degree-of-freedom (DOF) motion of a
planar mechanism is represented by the intersection curve of two
algebraic surfaces in the image space. The problem of motion
approximation is transformed into an algebraic curve fitting prob-
lem in the image space, where various methods in approximation
theory may be applied. This includes the definition of the approxi-
mation error (called structural error) in the image space, formula-
tion of a least squares problem and application of appropriate
numerical methods to find values of the design variables for mini-
mization of the error. Pursuant to Ravani and Roth’s kinematic
mapping approach for mechanism synthesis, further research has
been done by Bodduluri and McCarthy [15], Bodduluri [16], Lar-
ochelle [17,18], Ge and Larochelle [19], Husty et al. [20], and
more recently by Wu et al. [21], Purwar and Gupta [22], and
Hayes et al. [23,24]. Schrcker et al. [25] applied the kinematic
mapping approach to detect branch defect in the planar four-bar
linkage synthesis—a result that can be used in this work as well.

In this paper, we are dealing with the use of the image space of
planar kinematics for approximate task-driven simultaneous type
and dimensional synthesis of planar four-bar linkages. While the
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constraint manifolds associated with planar four-bar linkages are
algebraic, geometric (or, normal) distances have been used as
default metric for least-squares fitting of these algebraic mani-
folds. Ravani and Roth [9] used normal distance to develop a
least-squares algorithm for fitting the image curve of a four-bar
motion. Their algorithm has two features: (1) fit the set of image
points to two constraint manifolds simultaneously; and (2) use a
tangent hyperplane approximation of constraint manifolds to
obtain the normal distance. The resulting algorithm is highly non-
linear and requires many initial choices to converge to a reasona-
ble solution. Larochelle [26,27] presented a different approach to
the constraint manifold fitting problem that has the following two
features: (1) fit the set of image points to a single constraint mani-
fold; and (2) use a direct search method to obtain the normal dis-
tance directly. The restriction to a single manifold greatly reduces
the difficulty in the fitting problem and only one random initializa-
tion is required to converge to a good solution for a RR dyad.
Without using kinematic mapping, Yao and Angeles [28] used
least-square algebraic fitting approach for dyad synthesis of planar
linkages for approximate rigid body guidance. Their method is
limited to RR type dyads only and involves solving bivariate cubic
equations. More recently, Wu et al. [21] and Purwar and Gupta
[22] have demonstrated a visual, computer graphics approach for
multidegrees-of-freedom mechanism design that exploits the con-
straint manifold geometry and its apparent effect on the parame-
ters of a mechanism to interactively perform kinematic synthesis.
Hayes et al. [23,24] have presented preliminary results for com-
bining type and dimensional synthesis of planar mechanisms for
multipose rigid body guidance.

In contrast to the existing approach of trying to use the intersec-
tion curve of two algebraic manifolds for curve fitting, this paper
shows that the problem of kinematic synthesis of planar four bar
linkage can be solved by directly fitting a pencil of quadrics to a
set of image points defining the image curve of a desired motion.
In doing so, we use algebraic distances for least-squares fitting of
quadric equations defining the constraint manifolds. This leads to
a very simple and fast algorithm for linkage synthesis. The prob-
lem of fitting algebraic manifolds (or surfaces) has received con-
siderable attention in computer aided design (CAD) and pattern
recognition. A brief review of the work in this area has been pre-
sented in Ref. [7]. All the existing work for quadric surface fitting
in CAD, however, deals with surface data that lead to a unique
best fit surface. In kinematics, however, a given motion is mapped
to a curve in the image space. Thus, the problem of quadric sur-
face fitting in the context of kinematic mapping is fundamentally
different from CAD. Since only curve data are given, the result is
not a unique quadric but a pencil of quadrics that share the same
curve of intersection. In this paper, we study algebraic fitting of
quadric surface from this perspective and develop a new and uni-
fied method for kinematic synthesis of four-bar linkages (includ-
ing both revolute and sliding joints) based on linear least-squares
fitting of a pencil of quadrics.

The organization of the paper is as follows: Section 2 reviews
the concept of kinematic mapping and image space in so far as
necessary for the development of this paper. Section 3 presents
line and circle geometric constraints associated with planar dyad
motions. Section 4 deals with constraint manifolds associated
with planar dyads defined by a combination of revolute and pris-
matic joints and presents a unified representation of a generalized
manifold in the form of a general quadric. Section 5 deals with the
problem of algebraic fitting of a pencil of quadric surfaces to a set
of image points for an image curve defining a desired motion. In
Sec. 6, we present two examples of four-bar- and one six-bar-
linkages.

2 Parameterizing a Planar Displacement

A planar displacement can be decomposed into the translation
of a point (d1, d2) on the moving body as well as rotation of the
body by an angle /. Let M denote a coordinate frame attached to

the moving body and F be a fixed reference frame. Then, a planar
displacement can be represented as a transformation of point or
line coordinates from M to F. The point coordinate homogeneous
transformation matrix associated with a planar displacement is
given by

H½ � ¼
cos / �sin / d1

sin / cos / d2

0 0 1

2
4

3
5 (1)

The line coordinate transformation for the same displacement is
given by the transpose of the inverse of H½ � (see Ref. [13])

�H½ � ¼ H½ ��1
� �T

¼
cos / � sin / 0

sin / cos / 0

�d1 cos /� d2 sin / d1 sin /� d2 cos / 1

2
4

3
5 (2)

The transformations �H½ � and H½ � are said to be dual to each other.
Introducing the following mapping from Cartesian space

parameters (d1; d2;/) to image space coordinates Z ¼
Z1; Z2;Z3;Z4ð Þ (see Ref. [9])

Z1 ¼
1

2
d1 cos

/
2
þ d2 sin

/
2

� �
; Z2 ¼

1

2
�d1 sin

/
2
þ d2 cos

/
2

� �

Z3 ¼ sin
/
2
; Z4 ¼ cos

/
2

(3)

we can reparameterize the homogeneous transforms H½ � and �H½ �
in quadratic form

H½ � ¼
Z2

4 � Z2
3 �2Z3Z4 2 Z1Z3 þ Z2Z4ð Þ

2Z3Z4 Z2
4 � Z2

3 2 Z2Z3 � Z1Z4ð Þ
0 0 Z2

3 þ Z2
4

2
664

3
775 (4)

�H½ � ¼
Z2

4 � Z2
3 �2Z3Z4 0

2Z3Z4 Z2
4 � Z2

3 0

2 Z1Z3 � Z2Z4ð Þ 2 Z2Z3 þ Z1Z4ð Þ Z2
3 þ Z2

4

2
664

3
775 (5)

where Z2
3 þ Z2

4 ¼ 1.
Equation (3) defines a mapping from the Cartesian space

parameters (d1; d2;/Þ to a three-dimensional (3D) projective
quasi-elliptic space parameterized by the homogeneous coordi-
nates of the point Z. This is called the kinematic mapping of pla-
nar displacements and the corresponding 3D projective space is
called the Image Space of planar displacement, denoted as R.
There is no real planar displacement that maps to the points on the
real line given by Z3 ¼ Z4 ¼ 0. Thus, a planar displacement is
represented by a point in R; a single degree-of-freedom (DOF)
motion is represented by a curve; and a two DOF motion is repre-
sented by a surface in R. For details on kinematic mapping and
the properties of the image space, see Refs. [9] and [13].

3 Constraining a Planar Displacement

In this paper, we consider only one- and two-DOF motions that
are constrained by simple geometric constraints such as lines and
circles. This includes 2DOF planar motions of a rigid body subject
to one of the following four types of geometric constraints:

(1) one of its points stays on a circle: this can be realized by a
planar RR dyad, where R denotes a revolute joint; see
Fig. 1(a)
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(2) one of its points stays on a line: this can be realized by a
planar PR dyad, where P denotes a prismatic joint; see
Fig. 1(b)

(3) one of its lines stays tangent to a given circle: this can be
realized by a planar RP dyad; see Fig. 1(c)

(4) one of its lines translates along another line: this can be
realized by a planar PP dyad; see Fig. 1(d)

A planar motion subject to any two constraints listed above
(including two of the same types) results in a 1DOF motion called
planar four-bar motion. Planar four-bar linkages include planar
4R, slider–crank, inversions of slider–crank, as well as double-
slider mechanisms; see Fig. 2 for some such linkages. In this sec-
tion, we develop representations of circular and linear constraints
that lead to a unified representation of planar dyad motions listed
above.

Let X ¼ X1;X2;X3ð Þ (where X3 6¼ 0) denote the homogeneous
coordinates of a point. Then the following equation:

2a1X1 þ 2a2X2 þ a3X3 ¼ a0

X2
1 þ X2

2

X3

� �
(6)

defines a circle C when a0 6¼ 0. The center of the circle is given
by the homogeneous coordinates

a ¼ a1; a2; a0ð Þ (7)

and the radius r of the circle satisfies

a2
0r2 � a0a3 ¼ a2

1 þ a2
2 (8)

When a0 ¼ 0, Eq. (6) reduces to the equation of a line

2a1X1 þ 2a2X2 þ a3X3 ¼ 0 (9)

Thus, Eq. (6) is a unified presentation for both a circle and a line
in the homogeneous form.

As a planar RR dyad and a PR dyad define, respectively, a
2DOF motion of a rigid body for which one of its points stays on
a circle and on a line, Eq. (6) also provides a unified representa-
tion of geometric constraints associated with such two dyads.

We now consider an RP dyad that defines a 2DOF planar
motion for which one of its lines stays tangent to a given circle C.
This requires a line representation of a circle. First, we recast
Eq. (6) in matrix form

X1 X2 X3½ �
�a0 0 a1

0 �a0 a2

a1 a2 a3

2
4

3
5 X1

X2

X3

2
4

3
5 ¼ 0 (10)

The adjoint of the coefficient matrix in above is given by

Cadj½ � ¼
�a0a3 � a2

2 a1a2 a0a1

a1a2 �a0a3 � a2
1 a0a2

a0a1 a0a2 a2
0

2
4

3
5 (11)

It is well known in projective geometry of conics (see Ref. [29])
that a line with coordinates L ¼ L1;L2;L3ð Þ stays tangent to the
circle C with center and radius given by Eqs. (7) and (8), respec-
tively, when

LT Cadj½ �L ¼ 0 (12)

Using Eq. (8), we can decompose Cadj½ � as

Cadj½ � ¼
a2

1 a1a2 a0a1

a1a2 a2
2 a0a2

a0a1 a0a2 a2
0

2
664

3
775�

a2
0r2 0 0

0 a2
0r2 0

0 0 0

2
664

3
775 (13)

Substituting Cadj½ � from Eq. (13) into Eq. (12), we obtain, after
some algebra

a1L1 þ a2L2 þ a0L3 ¼ 6a0r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þ L2
2

q
(14)

This yields two lines that are r-distance away from the center of
the circle, a ¼ a1; a2; a0ð Þ. In addition, when r¼ 0, the two lines
overlap into one that passes through a. This is usually the case
with a swinging-block type dyad.

PP dyad is a special type of dyad, whose second link actually
follows a rectilinear motion with no change in orientation. The
motion of a PP dyad is constrained such that the angle between a
line L ¼ L1;L2; L3ð Þ and another line 2a1; 2a2; a3ð Þ in F is a con-
stant, which can be described as

2a1L1 þ 2a2L2 ¼ k (15)

where k is a constant that corresponds to the angle between the
two lines. Equation (15) can be seen as a special case of Eq. (14).
Thus, all the four planar dyads, RR, PR, RP, and PP, can be repre-
sented in terms of geometric constraints given by Eqs. (6) and
(14). Furthermore, the left-hand side of Eqs. (6) and (14) is a lin-
ear combination of point and line coordinates, respectively.

4 A Unifying Representation for Planar Dyad Motions

In this section, we first derive algebraic form of a generalized
quadric manifold that is common to 2DOF motions subject to the
constraints containing linear and quadratic terms in Eqs. (6) and
(14). We then show how this manifold can be used to develop a
unified representation for constraint manifolds of planar RR, PR,
RP, and PP dyads.

4.1 G-Manifolds for Planar Dyad Motions. Let x ¼ x1;ð
x2; x3Þ and X ¼ X1;X2;X3ð Þ denote the homogeneous coordinates
of a point in the moving frame M and the fixed frame F, respec-
tively; and let l ¼ l1; l2; l3ð Þ and L ¼ L1; L2;L3ð Þ denote the
homogeneous coordinates of a line in M and F, respectively,
where l21 þ l2

2 ¼ 1 and the absolute value of l3 is the distance to
the line from the origin of M. An algebraic form of the constraints
of the dyads parameterized by image space coordinates can be
obtained by substituting the fixed frame coordinates obtained
from X ¼ H½ �x or L ¼ �H½ �l in Eq. (6) or (14).

Fig. 1 Geometric constraints of a planar dyad of types: (a) RR,
(b) PR, (c) RP, and (d) PP

Fig. 2 Geometric constraints of some planar four-bar linkages:
(a) RRRR, (b) RRPR, (c) RRRP, and (d) RRPP
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In view of X ¼ H½ �x, where H½ � is given by Eq. (4), a linear
combination of the point coordinates as shown in point constraint

Eq. (6) involves only five distinct elements of the matrix H½ �; like-

wise, in view of L ¼ �H½ �l, where �H½ � is given by Eq. (5), a linear
combination of the line coordinates as shown in Eq. (14) involves

only five distinct elements of the matrix �H½ �. Furthermore, it can

be shown that the nonlinear term X2
1 þ X2

2

� �
=X3 in Eq. (6) pro-

duces only one new element Z2
1 þ Z2

2

� �
, and that the nonlinear

term in Eq. (14) is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þ L2
2

q
¼ Z2

3 þ Z2
4

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l2

2

q
¼ Z2

3 þ Z2
4 (16)

Thus, by collecting all of these independent terms appearing in
the constraint equations, we obtain the following common repre-
sentation of geometric constraints expressed by Eqs. (6) and (14)
in terms of image space coordinates Zi (i ¼ 1; 2; 3; 4):

q1 Z2
1 þ Z2

2

� �
þ q2 Z1Z3 � Z2Z4ð Þ þ q3 Z2Z3 þ Z1Z4ð Þ

þq4 Z1Z3 þ Z2Z4ð Þ þ q5 Z2Z3 � Z1Z4ð Þ þ q6Z3Z4

þq7 Z2
3 � Z2

4

� �
þ q8 Z2

3 þ Z2
4

� �
¼ 0

(17)

This defines a quadric surface in the image space with eight
homogeneous coefficients qi (i ¼ 1; 2;…; 8). In this paper, we call
this quadric a generalized constraint manifold, or G-manifold in
short. For this generalized-manifold to become the constraint
manifold (or C-manifold), of a planar RR, PR, RP, or PP dyad,
one must impose additional constraints on the coefficients qi.

4.2 C-Manifolds of RR and PR Dyads. Consider first a pla-
nar 2DOF motion of a rigid body for which a point x on moving
body remains on a circle with center a1; a2; a0ð Þ and radius r of
the fixed frame, i.e., satisfies the circular constraint of Eq. (6).
Substituting X ¼ H½ �x, where H½ � is given in Eq. (4), into Eq. (6),
we obtain, after some algebra

2a1 Z1Z3 þ Z2Z4ð Þ þ 2a2 Z2Z3 � Z1Z4ð Þ

þ �2a1x2 þ 2a2x1ð Þ
x3

Z3Z4 þ
a1x1 þ a2x2ð Þ

x3

Z2
4 � Z2

3

� �

þ 1

2
a3 Z2

3 þ Z2
4

� �
¼ a0

x2
3

2x2
3 Z2

1 þ Z2
2

� �
� 2x1 Z1Z3 � Z2Z4ð Þ

�

�2x2 Z2Z3 þ Z1Z4ð Þ þ 1

2x3

x2
1 þ x2

2

� �
Z2

3 þ Z2
4

� ��

(18)

After collecting like terms, we obtain

�2a0x3 Z2
1 þZ2

2

� �
þ 2a0x1 Z1Z3�Z2Z4ð Þþ 2a0x2 Z2Z3þZ1Z4ð Þ

þ2a1x3 Z1Z3þZ2Z4ð Þþ 2a2x3 Z2Z3�Z1Z4ð Þþ 2 a2x1� a1x2ð ÞZ3Z4

� a1x1þ a2x2ð Þ Z2
3 �Z2

4

� �
þ 1

2x3

a3x2
3� a0x2

1� a0x2
2

� �
Z2

3 þZ2
4

� �
¼ 0

(19)

We may rewrite Eq. (19) in the form of G-manifolds (Eq. (17)
with the following coefficients qi:

q1 ¼ �2a0x3

q2 ¼ 2a0x1; q3 ¼ 2a0x2

q4 ¼ 2a1x3; q5 ¼ 2a2x3

q6 ¼ 2 a2x1 � a1x2ð Þ; q7 ¼ � a1x1 þ a2x2ð Þ
q8 ¼ a3x2

3 � a0x2
1 � a0x2

2

� �
= 2x3ð Þ

(20)

It follows from Eq. (20) that the coefficients qi must satisfy the
following two relations:

q1q6 þ q2q5 � q3q4 ¼ 0

2q1q7 � q2q4 � q3q5 ¼ 0
(21)

e ¼
ffiffiffi
E
p

;where

E ¼ q1q6 þ q2q5 � q3q4½ �2 þ 2q1q7 � q2q4 � q3q5½ �2 (22)

Also e is called the constraint fitting error, which can be used
to show if a vector p is qualified to represent a dyad.

Note that the coefficient q8 is not constrained by Eq. (21) and
thus can be used as the homogenizing factor. Thus, there are a
total of five independent coefficients, which is consistent with the
number of parameters required to define an RR dyad. Only a sub-
set of the G-manifold (17) whose coefficients satisfy Eq. (21) cor-
responds to the C-manifolds associated with a circular constraint
of Eq. (6). In particular, when a0 6¼ 0, we obtain the constraint
manifold of a RR dyad whose projection onto the hyperplane Z4 ¼
1 is a hyperboloid of one sheet [7,9,14,21]. Figure 3 shows an
example of such a hyperboloid. When a0 ¼ 0, we obtain the con-
straint manifold of a PR dyad whose projection onto Z4 ¼ 1 is a
hyperbolic paraboloid (Fig. 4). Furthermore, it follows from Eq.
(20) that when a0 ¼ 0, one has q1 ¼ q2 ¼ q3 ¼ 0 and that both
relations in Eq. (21) are automatically satisfied. This means that
the constraint manifold of a PR dyad may be considered as a
special case of that of a RR dyad.

4.3 C-Manifold of an RP Dyad. The motion of an RP dyad
is constrained such that a line l ¼ l1; l2; l3ð Þ on moving body stays

tangent to a given circle C of fixed frame. Substituting L ¼ �H½ �l,
where �H½ � is given by Eq. (5), and Eq. (16) into Eq. (14), we can
put the resulting C-manifold in the same form as given by
Eq. (17) where

q1 ¼ 0; q2 ¼ 2a0l1 q3 ¼ 2a0l2
q4 ¼ 0; q5 ¼ 0;

q6 ¼ �2a1l2 þ 2a2l1; q7 ¼ �a1l1 � a2l2; q8 ¼ a0 l36rð Þ
(23)

As both l3 and r are lumped into q8, without any loss of generality,
we may set r¼ 0, i.e., requiring that the line L passes through the
fixed point a1; a2; a0ð Þ instead of being tangent to the circle C.
The set of five nonzero coefficients q2; q3; q6; q7; q8ð Þ are homoge-
neous but otherwise independent of each other. Furthermore, since
q1 ¼ q4 ¼ q5 ¼ 0, it follows that Eq. (21) is automatically satis-
fied. Projecting this manifold onto Z4 ¼ 1, one obtains a

Fig. 3 A right circular hyperboloid of one sheet defined by
Z 2

1 1ðZ222Z3Þ224Z 2
3 5 5
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hyperbolic paraboloid, the same type of quadric as obtained in
case of a PR dyad.

4.4 C-Manifold of PP Dyad. PP dyad is a special type of
mechanism, whose second link actually follows a translational
motion with no change in orientation. The motion of a PP dyad is
constrained such that the angle between a line l ¼ l1; l2; l3ð Þ in M
and a line 2a1; 2a2; a3ð Þ in F is a constant. Substituting L ¼ �H½ �l
in Eq. (15) as in an RP case, we can put the resulting constraint
manifold in the same form as Eq. (17) where

q1 ¼ 0; q2 ¼ 0 q3 ¼ 0

q4 ¼ 0; q5 ¼ 0;

q6 ¼ 2a1l2 � 2a2l1; q7 ¼ a1l1 þ a2l2; q8 ¼ �
k

2

(24)

Since q1 through q5 are all equal to zero, it follows that Eq. (21) is
automatically satisfied. Projecting this manifold onto Z4 ¼ 1, one
obtains two parallel planes in the form of Z3 ¼ constant. With
only two equations and four unknowns to solve for, the inverse
computation will result in infinite solutions. This is because the
position of the line can be arbitrary for pure translation.

4.5 Inverse Computations of Dyad Parameters. A unified
form of the inverse computation relationships for RR, PR or RP
type of dyad is given as follows:

l1 : l2 : l3 ¼ q2 : q3 : 2q8

a0 : a1 : a2 ¼ q2
1 þ q2

2 þ q2
3

� �
: �q1q4 � q3q6 � 2q2q7ð Þ :

�q1q5 þ q2q6 � 2q3q7ð Þ
x1 : x2 : x3 ¼ q6q5 � 2q7q4ð Þ : � q6q4 þ 2q7q5ð Þ : q2

5 þ q2
4

� �
(25)

4.6 Sufficiency of the Unified Representation. From Secs.
4.1–4.5, we have found that the algebraic constraints of all the
four types of planar dyads, RR, PR, RP and PP, can be converted
to a unified representation given by the G-manifold (17) with two
fundamental conditions (21). Conversely, it is not difficult to
show that when q1 6¼ 0, the G-manifold (17) whose coefficients
satisfy the two conditions (21) reduces to a hyperboloid of one
sheet

q1Z1 þ
1

2
q2 þ q4ð ÞZ3 þ

1

2
q3 � q5ð Þ

	 
2

þ q1Z2 þ
1

2
q3 þ q5ð ÞZ3 þ

1

2
q2 � q4ð Þ

	 
2

¼ 1

4
q2

2 þ q2
3 þ q2

4 þ q2
5 � 4q1q8

� �
Z2

3 þ 1
� �

(26)

and that when q1 ¼ 0, the G-manifold satisfying Eq. (21) reduces
to a hyperbolic paraboloid

Z3 q3 þ q5ð ÞZ2 þ q7 þ q8ð ÞZ3 þ q2 þ q4ð ÞZ1 þ q6½ �
¼ q5 � q3ð ÞZ1 þ q2 � q4ð ÞZ2 þ q7 � q8ð Þ (27)

Thus, it is concluded that the unified representation is both neces-
sary and sufficient for representing all four types of planar dyads,
RR, PR, RP, and PP.

4.7 Unifying Representations for Planar Four-Bar
Motions. It is well known that a planar four-bar linkage can be
defined by combining two planar dyads from the group of four
dyads: RR, PR, RP, and PP. This results in planar 4R,
slider–crank, inversions of slider–crank, as well as double slider
mechanisms. In the past, the image curve of a planar four-bar link-
age has been represented as intersection of two constraint

manifolds directly associated with the two dyads. In this paper,
however, we represent the image curve by a pencil of quadrics
(17) that satisfy the conditions on the coefficients given by Eq.
(21). Instead of fitting a pair of constraint manifolds directly, we
first fit a pencil of G-manifolds (17) to the set of image points and
then impose constraints (21) to identify two C-manifolds from the
pencil of G-manifolds. This decoupling of constraints (21) from
the curve fitting process not only removes the bottleneck in the fit-
ting of the image curve of a four-bar linkage but also unifies the
synthesis of all types of planar four-bar linkages. The choice of an
R or P joint in a four-bar linkage is determined by the input posi-
tions only and is obtained after the fitting process for a pencil of
G-manifolds.

5 Algebraic Fitting of a Pencil of G-Manifolds

Now consider the problem of fitting a pencil of G-manifolds to
a set of N image points arranged such that they define an image
curve rather than a surface. This problem can be formulated as an
over-constrained linear problem A½ �q ¼ 0 obtained by substituting
for the given values of the image points in Eq. (17), where q is the
column vector of homogeneous coefficients qi i ¼ 1…8ð Þ. The
coefficient matrix A½ � is given by

A½ � ¼

A11 A12 A13 A14 A15 A16 A17 A18

� �

� . .
.

�

� �

AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8

2
666664

3
777775
(28)

where for the ith image points, we have

Ai1 ¼ Z2
i1 þ Z2

i2; Ai2 ¼ Zi1Zi3 � Zi2Zi4

Ai3 ¼ Zi2Zi3 þ Zi1Zi4; Ai4 ¼ Zi1Zi3 þ Zi2Zi4

Ai5 ¼ Zi2Zi3 � Zi1Zi4; Ai6 ¼ Zi3Zi4

Ai7 ¼ Z2
i3 � Z2

i4; Ai8 ¼ Z2
i3 þ Z2

i4

(29)

5.1 Singular Value Decomposition. In linear algebra, the
singular value decomposition (SVD) (see Ref. [30]) of an N � 8
matrix A½ � is a factorization of the form

A½ � ¼ U½ � S½ � V½ �T (30)

where U½ � is an N�N orthonormal matrix, whose N columns,

called the left singular vectors of A½ �, are the eigenvectors of

A½ � A½ �T; S½ � is an N � 8 rectangular diagonal matrix with eight
non-negative real numbers on the diagonal, whose values are

square roots of the eigenvalues of A½ � A½ �T (or equivalently

Fig. 4 A hyperbolic paraboloid defined by Z1Z22Z3 5 0
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A½ �T A½ �); and V½ �T is an 8� 8 orthonormal matrix, whose eight
columns, called the right singular vectors, are the eigenvectors of

A½ �T A½ �.
The over-constrained system of linear equations, A½ �q ¼ 0, can

be solved as a total least squares minimization problem with the

constraint qTq ¼ 1. The solution turns out to be the right singular

vectors of A½ � corresponding to the least singular values. These
vectors form an orthonormal set of basis vectors spanning the null

space of A½ �, or in other words, solutions to A½ �q ¼ 0. Therefore,

the rank of matrix A½ �, and consequently its nullity (8� rank), will
determine the number of zero singular values.

We note that the algebraic distance fitting in SVD uses minimi-
zation of the two-norm of the error vector A½ �q over all given
image points. Such an expression is unit-inconsistent due to the
fact that A½ � contains terms of image space coordinates, which
have different dimensions (Z1, Z2 have dimensions of translation
components, while Z3, Z4 are dimensionless). In order to resolve
this inconsistency, it is commonly suggested that the translation
vector be divided by a characteristic length L so that the transla-
tion vector is rendered dimensionless. Then, the new coordinates
are given as

Z1 ¼
1

2

d1

L
sin

/
2
� d2

L
cos

/
2

� �

Z2 ¼
1

2

d1

L
cos

/
2
þ d2

L
sin

/
2

� �

Z3 ¼ sin
/
2

Z4 ¼ cos
/
2

(31)

When the translation components are rationalized as in above, we
can use two-norm for least-square calculations. The choice of a
characteristic length is discussed in detail in Ref. [31]. Another
approach is to approximate a planar displacement with a spherical
displacement in order to obtain a distance metric that is approxi-
mately bi-invariant and unit-consistent. This approach has been
discussed in Refs. [32–36], and more recently in Ref. [37]. Purwar
and Ge [37] have shown how a planar or spatial displacement can
be approximated by a 3D- or four-dimensional-rotation using
dual- and double-quaternion approach. Since this paper’s focus is
not on distance metric computation, for computational simplicity,
we choose L¼ 1. Any other choice of L would leave our method
and algorithm unchanged. This is the choice that Ravani and Roth
[9] and in recent years Hayes et al. [23,24] have also made
although without explicitly mentioning it.

As the matrix A½ �T A½ � is 8� 8 and positive semidefinite, all
eigenvalues are non-negative and the eigenvector associated with
the smallest of the eight eigenvalues is a “candidate” solution for

p ¼ p1; p2;…; p8ð Þ. When n � 5, the matrix A½ �T A½ � has in general

8� nð Þ identical zero eigenvalues, the null space of A½ � is 8� nð Þ
dimensional, and is defined by the corresponding orthonormal
eigenvectors associated with the zero eigenvalues. Thus, a candi-
date solution may be expressed as a linear combination of those

orthonormal eigenvectors. For n � 5, the rank of matrix A½ � is

five, then the matrix A½ �T A½ � has three near-zero eigenvalues and
the corresponding eigenvectors, va; vb, and vc, define the basis for
the null space. Let a, b, and c denote three real homogeneous
parameters. Then, any vector in the null space is given by

p ¼ ava þ bvb þ cvc (32)

For vector p to satisfy Eq. (21), we substitute Eq. (32) into Eq.
(21) and obtain two homogeneous quadratic equations in a; b; cð Þ

K10a
2 þ K11b

2 þ K12abþ K13acþ K14bcþ K15c
2 ¼ 0

K20a
2 þ K21b

2 þ K22abþ K23acþ K24bcþ K25c
2 ¼ 0

(33)

where Kij are defined by components of the three eigenvectors,
which can be obtained from using singular value decomposition
of A½ � [30]. As a, b, and c are homogenous, we can set c to be 1 in
order to solve for a and b.

Solving Eq. (33) and substituting in Eq. (32) would lead to the
homogeneous coordinates of dyads. For a set of n task positions,
the aforementioned task analysis algorithm may yield up to four
dyads from the solution of two quadratic equations in Eq. (21),
two of which can be combined to form up to six four-bar linkages.
Design parameters such as x1; x2; x3ð Þ and a0; a1; a2; a3ð Þ can be
obtained from inverse relationships given in Eq. (25).

In short, this approach leads to a unified algorithm for both
exact synthesis (when n � 5) and approximate synthesis (when
n> 5) of planar dyads that can handle joint type and dimensional
synthesis simultaneously.

6 Examples

Now, we present three examples that illustrate our approach.
These examples do not presume the linkage type and determine
the best types and dimensions from the given motion.

6.1 Example: Motion of an Aircraft Landing Gear. Five
positions for the landing gear of an aircraft are shown in Fig. 5
and listed in Table 1. The objective is to find a four-bar mecha-
nism, which can realize this motion.

The first step of the two-step algorithm is to extract geometric
constraints of motion and fit a pencil of G-manifolds to it. This is
done by creating matrix [A] using Eq. (28) and applying SVD to
it. Since the nullity of [A] is 3, we pick three singular vectors
associated with near-zero singular values. Singular values and sin-
gular vectors are presented in Tables 2 and 3. These singular vec-
tors form a pencil of G-manifolds defined by Eq. (32). Table 3
also contains constraint fitting error for each of the singular vec-
tors, clearly indicating that none of them correspond to any type
of mechanical dyad.

Fig. 5 Example 6.1: five positions of an aircraft landing gear
labeled 1 . . . 5 are shown. The moving frame is attached to the
top left corner of the housing, while frame XY is the fixed frame.

Table 1 Example 6.1: five landing gear poses

Position x y Orientation (deg)

1 0.3230 �0.0400 52.5946
2 1.6205 2.6380 33.9420
3 3.6380 5.5535 24.5727
4 6.4750 5.9820 56.2930
5 8.2600 7.1725 89.7237
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The second step is to impose constraints (33) to identify C-
manifolds from the pencil of G-manifolds. Solving these equa-
tions leads to two real solutions of a, b given by

a1 ¼ �1:9303; b1 ¼ 0:2417

a2 ¼ 1:4469; b2 ¼ 0:6985
(34)

Each real solution forms a C-manifold; see Table 4. It can be seen
in this table that fitting error is of the order of 10�17; hence, these
manifolds are constraint manifolds of planar dyads. By examining
the coefficients of vectors p1 and p2, it can be easily shown that
first vector corresponds to the constraint manifold of an RR dyad
(q1 6¼ 0), whereas the second vector corresponds to the constraint
manifold of a PR dyad (q1 ¼ q2 ¼ q3 ¼ 0). Hence, a slider crank

mechanism is formed by joining these two dyads via coupler as
shown in Fig. 5. The C-manifolds projected on hyperplane Z4 ¼ 1
are shown in Fig. 6. The linkage parameters can be obtained from
inverse kinematic equations (25). Parameters for dyad 1 are: a0 :
a1 : a2 : a3 ¼ 5:9352� 10�3 : 0:0387 : 0:05989 : � 109:8479; x1 :
x2 : x3 ¼ 7:1373 : �2:3250 : 1, while for dyad 2, they are: a0 : a1 :
a2 : a3 ¼ 4:7822� 10�10 : 1:4528� 10�5 : 1:4365� 10�5 : �328;
400:709, x1 : x2 : x3 ¼ 2:8282 : 3:7737 : 1.

6.2 Example: ASME Mechanism Design Challenge.
McCarthy at the 2002 ASME IDETC [38] proposed a mechanism
design challenge where the objective was to synthesize a four-bar
linkage to follow a motion defined by 11 poses as shown in Fig. 7.
In general, such a motion can be only approximated by a four-bar
linkage.

Applying our algorithm, we obtain the singular values and sin-
gular vectors as listed in Tables 5 and 6, respectively. The singular
vectors form the basis for a pencil of G-manifolds. Then, we
impose constraints (33) to identify C-manifolds from the pencil of
G-manifolds. Solving equations (33) leads to two real solutions of
a and b given by

a1 ¼ 1:4526; b1 ¼ �0:5846

a2 ¼ 1:2283; b2 ¼ 1:2944
(35)

Each real solution forms a C-manifold. Table 7 contains vector
coefficients corresponding to C-manifolds obtained. The projec-
tion of these C-manifolds on hyperplane Z4 ¼ 1 is depicted in
Fig. 8. It can be seen in Table 7 that fitting error is of the order of
10�11; hence, these manifolds are constraint manifolds of planar

Table 2 Example 6.1: singular values

1509.9576 19.9563 2.1997 0.86514 0.17287 4:5937� 10�22 3:67426� 10�23 1:4156� 10�23

Table 3 Example 6.1: singular vectors associated with three near-zero singular values presented in Table 2

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

va 0.0056 0.0469 0.0165 0.2090 �0.17914 �0.9082 �0.2646 0.1640 0.0196
vb �0.0568 0.3128 �0.1360 0.9012 �0.07953 0.1945 0.05358 �0.1455 0.3112
vc 0.0273 0.0377 0.0729 �0.0745 �0.0557 0.1362 �0.8162 �0.5468 0.0384

Table 4 Example 6.1: C-manifolds obtained in the second step of fitting process, which represent two dyads of mechanism shown
in Fig. 5

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

p1 �0.01024 0.07268 �0.02362 0.06634 0.10266 0.88697 �0.11741 �0.42266 2:454� 10�17

p2 �4:54� 10�6 1:24� 10�5 1:74� 10�5 �0.13780 0.13626 0.90545 �0.06223 �0.37245 6:446� 10�17

Fig. 6 Example 6.1: two resulting constraint manifolds identi-
fied from a pencil of G-manifolds that satisfy Eq. (21) are illus-
trated in this figure by projecting them on hyperplane Z4 5 1.
Intersection of hyperboloid and hyperbolic paraboloid forms
constraint manifold of the slider crank mechanism. Five black
image points on the intersection curve show projection of five
task positions on hyperplane Z4 5 1.

Fig. 7 Example 6.2: 11 task positions of ASME Mechanism
Design Challenge and its solution as synthesized four-bar
mechanism
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dyads. After further evaluation as presented in Sec. 4.2, it can be
easily concluded that each of the dyad corresponds to an RR dyad,
which forms the four-bar mechanism depicted in Fig. 7. It is seen
that the four-bar obtained in this case goes through each of the 11
poses exactly and that is because the 11 poses given were obtained
from a known four-bar linkage. Using inverse kinematic equations
(25), we obtain linkage parameters. The parameters for dyad 1
are: a0 : a1 : a2 : a3 ¼ 0:2146 : 0:4728 : 0:3483 : �4:3961; x1 : x2 :
x3 ¼ 1:9487 : 1:3921 : 1, and for dyad 2 they are: a0 : a1 : a2 : a3 ¼
0:5942 : 0:4726 : 0:2169 : 2:2744; x1 : x2 : x3 ¼ 0:0615 : 1:5700 : 1.

6.3 Example: Sit-to-Stand (STS) Motion. Now, we present
an example where a linkage that can execute a sit-to-stand (STS)
motion for people suffering from neuromuscular disabilities is to
be synthesized. It is desirable that the orientation of the upper
body to which the coupler will be attached remains constant dur-
ing the STS motion. We specify five task positions with the same
orientation, i.e., 0deg but the coupler goes through five different
locations as shown in Table 8.

Since all five task positions share the same orientation and the
positions are not on a circle, it is known that no four-bar linkage
could realize this motion. So, we try to find a six bar which can
realize this motion. There are many ways in which different types
of six bar mechanisms can be synthesized. Here we employ Soh
and McCarthy’s strategy of synthesizing six-bar linkages [1],
which is to start with finding a 3R triad to realize the task posi-
tions (Fig. 9), and then form a 1DOF closed-chain six-bar linkage
by adding additional links. The process of adding a new link
requires the synthesis of dyads, which are obtained by repeated
application of our algorithm. For a triad shown in Fig. 9, we pick
the location of fixed pivot (F1) and third joint (L1) as well as the
length of the two links (links 2 and 3) between them. The given
task positions are located at L1. Although there are an infinite
number of triads that can reach these task positions, we pick
length for links 2 and 3 to be 10.5 and 14.92, respectively, such
that the triad’s workspace contains the given positions; see Ref.
[21] for an image-based graphical approach to selecting planar tri-
ads. Next, we use inverse kinematics to obtain the locations of
joint M1 and orientations of links 2 and 3 at various task positions.
Table 9 contains orientations of link 2 corresponding to each task
position.

Next, we form links 4 (L1L2) and 5 (L2M3) to create a two-
DOF five-bar linkage; see Fig. 10. These link lengths can be

Table 5 Example 6.2: singular values

23.37871 8.76083 4.36441 0.79490 0.152857 4:256� 10�5 5:378� 10�10 3:143� 10�11

Table 6 Example 6.2: singular vectors obtained from singular value decomposition

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

va �4:173� 10�4 0.23761 0.2171 0.3202 �0.0304 �0.5980 �0.4235 �0.5058 0.1031
vb �1:725� 10�5 �0.3054 0.1746 �0.1395 �0.3229 �0.6810 0.4536 0.2878 0.1237
vc 0.5653 0.0481 �0.6360 �0.2299 �0.3669 �0.0805 0.0031 �0.2817 0.3029

Table 7 Example 6.2: C-manifolds corresponding to RR dyads of four-bar synthesized as shown in Fig. 7

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

p1 0.17676 �0.34320 �0.25378 �0.39146 �0.28577 0.00718 0.58515 0.45736 3:065� 10�12

p2 0.41615 �0.02425 �0.65091 �0.32670 �0.15971 0.50174 0.13443 0.02244 1:706� 10�11

Fig. 8 Example 6.2: projection of C-manifolds tabulated in
Table 7. Their intersection forms constraint manifold of the
four-bar linkage. Eleven black image points on the intersection
curve represent projection of task positions on hyperplane
Z4 5 1.

Table 8 Example 6.3: five positions for sit to stand motion

Position x y Orientation

1 �6.41 �9.80 0
2 �3.85 �10.50 0
3 �0.40 6.30 0
4 1.00 6.30 0
5 0.90 8.60 0

Fig. 9 Example 6.3: the synthesis starts by finding a 3R triad
whose workspace contains the given task positions. The figure
shows triad at the first task position.
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obtained by applying our algorithm to the task positions relative
to link 2. We calculate location and orientation of the task posi-
tions with respect to the rotating frame X2Y2 located at point F1
and attached to link 2 in its corresponding orientation from
Table 9. Now, we synthesize dyads that will reach these relative

task positions by using our algorithm. Tables 10 and 11 present
singular values and singular vectors obtained from the algorithm.
Next step of the process is to impose constraints (33) to identify
C-manifolds from the pencil of G-manifolds. Solving these equa-
tions leads to four real solutions of a, b given by

a1 ¼ �1:2761; b1 ¼ 0:4521

a2 ¼ 0:1834; b2 ¼ �0:8998

a3 ¼ �0:6259; b3 ¼ 0:1104

a4 ¼ 0:1463; b4 ¼ 0:1105

(36)

Table 12 presents dyads obtained after second step of synthesis
from which the first one, p1, is selected and shown in Fig. 10.

At last, as shown in Fig. 11, link 6 (F2M2) is added between
links 5 and 1 and links 2 and 5 are joined to close the linkage
chain and reduce the system DOF from 2 to 1. Five positions of
link 5 relative to ground (link 1) are computed, and again by
applying our algorithm to these positions, we obtain four feasible
dyads. Tables 13–15 present singular values, singular vectors, and
dyads obtained in the synthesis process, respectively. Four solu-
tions to Eq. (33) in the second step of synthesis are given by

a1 ¼ �0:0030; b1 ¼ 0:0654

a2 ¼ �0:0265; b2 ¼ 0:6965

a3 ¼ �0:0092; b3 ¼ 0:0791

a4 ¼ 0:0411: b4 ¼ 0:9517

(37)

It is obvious that one of the resulting dyad should be the existing
coupler link 2. The other three feasible ground joints are:

Table 9 Example 6.3: orientations of link 2 after inverse kine-
matics computation

Task position Orientation of link 2 (deg)

1 139.69
2 134.49
3 101.05
4 64.95
5 68.16

Table 10 Example 6.3: singular values obtained in relative synthesis of links 4 and 5

22,209 92.271 15.0021 0.23189 0.01793 7:7724� 10�12 4:1753� 10�13 2:4375� 10�13

Fig. 10 Example 6.3: the figure shows a five-bar linkage, where
links 4 and 5 are synthesized relative to the link 2. Figure shows
locations of fixed and moving pivots of chosen dyad obtained
as a result of relative synthesis.

Table 11 Example 6.3: singular vectors associated with near-zero singular values presented in Table 10

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

va �0.0399 0.0343 0.0120 0.4074 0.0847 �0.9018 �0.1025 0.0121 0.1564
vb �0.0464 0.1559 �0.1646 0.3061 0.0742 0.0465 0.9193 0.0123 0.0574
vc �0.0229 �0.0222 0.0164 0.2623 �0.0206 0.1268 �0.08658 0.9517 0.1463

Table 12 Example 6.3: C-manifolds obtained in relative synthesis of links 4 and 5

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

p1 7.15 �10�3 4.26 �10�3 �0.0733 �0.1191 �0.0952 1.2988 0.4599 0.9518 4.65 �10�13

p2 0.0115 �0.1558 0.1668 0.0615 �0.0718 �0.0805 �0.9326 0.9517 7.69 �10�14

p3 �3.14 �10�3 �0.0265 �9.22 �10�3 0.0411 �0.0654 0.6965 0.0791 0.9517 6.54 �10�14

p4 �0.0334 �4.40 �10�13 �1.63 �10�13 0.3557 �4.36 �10�13 1.72 �10�12 2.31 �10�12 0.9517 2.35 �10�13

Table 14 Example 6.3: singular vectors associated with zero singular values presented in Table 13

Vector q1 q2 q3 q4 q5 q6 q7 q8 e

va �0.0137 �1:14� 10�3 �4:63� 10�3 0.1287 �0.062 �10�3 �6.04 �10�3 �0.0458 0.9885 0.2416
vb 0.0161 0.0653 0.0148 0.02145 �0.1055 0.9896 0.0650 0.0123 0.1432
vc �0.0191 �0.0103 �0.0934 �0.3013 0.0750 0.0788 �0.9424 0.4363 0.1624

Table 13 Example 6.3: singular values obtained in synthesis of link 6

12,164 231.45 24.2207 6.0531 2.0841 7:7724� 10�12 4:1753� 10�13 2:4375� 10�13
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(20.7068, �2.92409), (�9.19081, 11.3414), and (16.9025,
8.74652). The corresponding lengths of link 6 are 30.2593,
10.4335, and 27.358. We select link 6 (F2M2) to have the ground
joint with coordinates (�9.19081, 11.3414) and link length of
10.4335. Figure 11 shows the synthesized Watt I six-bar linkage at
the first position. At this position, the coordinates of seven pivots
of the six bar are presented in Table 16. Figure 12 shows the syn-
thesized Watt I six-bar linkage passing through the remaining four
specified task positions. This example has demonstrated that
by repeated application of the same algorithm, planar six-bar
linkages with both revolute and prismatic joints can also be
synthesized.

7 Conclusions

In this paper, we presented a novel method for synthesizing pla-
nar motion using kinematic mapping. Instead of finding two spe-
cial quadric constraint manifolds associated with a four-bar
linkage with nonlinear (quadratic) coefficients, which makes the
problem difficult to solve, we used a more general form of quadric
such that its coefficients are linear. Furthermore, we seek to fit a
given set of image points to a pencil of quadrics. This leads to a
linear least squares problem that can be readily solved using SVD
algorithm. After obtaining the pencil of quadrics that contains the
constraint manifolds, we then impose the quadratic constraints
associated with the constraint manifold to find the two special
quadrics. The resulting algorithm for planar four-bar linkage syn-
thesis is not only vastly more efficient but also unifies the treat-
ment of dyads composed from revolute joints and sliding joints.
We also showed that by applying the same algorithm twice, planar
six-bar linkages can also be synthesized.
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