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Abstract of the Dissertation

Data-Driven Approach To Variational Synthesis of Mechanisms

by

Shrinath Deshpande

Doctor of Philosophy

in

Department of Mechanical Engineering

Stony Brook University

2020

Kinematic synthesis of mechanisms is an important phase in the conceptual

design of machines. This requires the synthesis to be prolific in terms of concept

generation to realize the potential of attainable design possibilities and to have the

agility to adapt a design to evolving requirements. The goal of this research is to

advance the science of kinematic synthesis by bringing together machine learning and

theoretical kinematics to create a data-driven computational framework for kinematic

synthesis of mechanisms.

At the heart of this novel framework lies a probabilistic generative model that

learns joint probability distribution of various linkage parameters and their interde-

pendence to perform useful inference tasks. In doing so, we leverage the emerging

machine learning techniques to learn meaningful representations and combine them

with simultaneous type and dimensional methods of kinematic synthesis to enhance

users’ computational creativity. The approach is particularly amenable to mechanism

synthesis when the input from mechanism designers is deliberately imprecise or inher-

ently uncertain due to the nature of the problem. The approach models the input as a

probability distribution and employs a deep generative model to capture the inherent

uncertainty in the input. In addition, it gives feedback on the input quality and pro-



vides corrections for a more conducive input. Lastly, the outputs are post-processed

and the designer is presented with a set of distributions of solutions, where each set

consists of a concept with different variations. We define this approach, where the

input uncertainty is intelligently managed to generate a distribution of solutions as

Variational Synthesis of Mechanisms.
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Chapter 1

Introduction

Figure 1.1: Overview of Classical Mechanism Design: The process starts with a
machine design problem, where the objective is to design a machine to perform some
functionality. This functionality is expressed in terms of specifications and criteria.
The mechanism designer converts the design problem into a synthesis task and feeds
it to synthesis methods to obtain a set of solutions from which useful solutions are
passed over to the detailed design phase.

A mechanism is defined to be a collection of rigid bodies connected by joints

such as hinges or sliders in order to generate articulated motions. Kinematic synthesis

of mechanism deals with computing type and the dimension of mechanisms that are

useful for a particular task1 (Xtask). The past forty years of research in kinematic

synthesis of mechanisms has witnessed an unprecedented volume of work in formu-

lating and solving linkage synthesis problems; see McCarthy and Soh [4], Sandor and

1 a general term describing prescribed path for path generation problem, prescribed motion for
motion generation problem and prescribed function for function generation problem or a combination
of both



Erdman [5], Hunt [6], Hartenberg, and Denavit [7], Suh and Radcliffe [8], and Lohse

[9]. However, finding practical and useful mechanisms for the synthesis problems

has proven to be a difficult feat. Figure 1.1 depicts the classical mechanism design

process. The objective of the mechanism design process is to obtain the type and di-

mensions of a mechanism that is fit to perform the intended functionality. However,

methods for kinematic synthesis can deal with only some specific types of kinematic

constraints, which categorize mechanism synthesis into three main sub-problems: 1)

Function Generation, 2) Path Generation, and 3) Motion Generation. The Function

Generation task demands a prescribed relationship between the rotation of input and

output links of the mechanism. In the Path Generation task, the aim is to move an

object through space along a prescribed path, whereas in Motion Generation a rigid

body needs to be guided along a prescribed motion. Hereinafter, Motion is termed

as a continuous sequence of poses, where a pose is a combination of position and ori-

entation. This categorization forces the designer to compose a ‘well-posed’ synthesis

task, which is merely an approximation of the original design task.

A general synthesis procedure can be represented as,

Solver(Xtask) = {Lipara}
i=n

i=1
. (1.1)

Here, a synthesis solver Solver takes the task Xtask as the input and produces n

solutions. Lipara is the set of linkage parameters for the ith solution. X2 is the

targeted linkage property prescribed by Xtask.

Methods for mechanism synthesis start with taking input Xtask in the form of a

sequence of path-points, poses, or functional input-output relationships from the user.

A large majority of Motion and Path Generation methods take the precision point

approach, which optimally minimizes the least squared fitting error between Xtask

and X. This approach is highly susceptible to input precision points/poses and in

most cases results in solutions with circuit or branch defects [10]. Figure 1.2 depicts

2 A general term representing target property of linkage for which the kinematic synthesis is
conducted. In case of motion (or path) generation problem, X is coupler motion (or path).
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Figure 1.2: The four-bar mechanism obtained using the precision position approach
suffers from circuit defect, as the linkage can not go through all poses in a single
assembly configuration.

such an example where a set of five poses are prescribed to approximate the intended

motion. The obtained solution satisfies the kinematic task exactly but is not useful

to perform the original task. The root cause of sensitivity is due to the nonlinearity

of the governing system of equations.

To illustrate this chaotic nature, let us consider the following example. Six poses

are sampled from a four-bar linkage as shown in Fig. 1.3. As the poses are already

known to lie on the coupler motion, our motion generator algorithm[2] obtains the

original four-bar as expected. However, even a small change in the orientation of

a pose results in an entirely different linkage suffering from branch defect, therefore

making it unsuitable to perform the function. Moreover, increasing the number of

positions by means of a B-spline interpolation through original poses does not help as

shown in the last of Fig. 1.3. It is important to note that the algorithm [2] used for

synthesis in the example is a representative of the approaches based on the precision

point approach. In the real world, when a user inputs a sequence and receives a

result not suitable for the application, no informed decisions can be made to rectify

the situation. To add more uncertainty, the task is often an approximation of the

designer’s intended motion. To accommodate this uncertainty, a common approach
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Original Small Change in Input

Figure 1.3: Slightly different inputs result in entirely different mechanisms. The input
on the left generates a defect-free four-bar linkage. The input in the middle is formed
by perturbing the orientation of the fourth pose by 15 degrees. The dashed frame
in the middle input represents the original unaltered pose. Increasing the number of
poses does not help either as shown by the mechanism generated on the right.

is to do random perturbations within the tolerance of target path or motion in the

hope of getting a good solution. The probability of a random perturbation to find a

valid input reduces exponentially with the number of precision positions as well as

the tolerance range.

To perform intelligent modifications to Xtask, it is necessary to possess knowl-

edge about the properties of X. Let us define this knowledge as a prior probability

distribution. In Bayesian statistical inference, a prior probability distribution, often

simply called the prior, of an uncertain quantity is the probability distribution that

would express one’s beliefs about this quantity before some evidence is taken into

account.

While the sensitivity to the input has been a problem in finding good solutions,

it turns out that we can exploit the susceptibility of synthesis algorithms by providing

them with a variety of preconditioned inputs so as to find a diverse range of defect-

free solutions. By providing tools that can provide the designer with intelligent control

on input specification, we can help them be more creative as well.

To address these challenges, the proposed research brings together machine

learning and theoretical kinematics to create a data-driven computational framework

for kinematic synthesis of mechanisms. In doing so, we leverage the emerging ma-
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chine learning techniques to learn meaningful representations and combine them with

simultaneous type and dimensional methods of kinematic synthesis to enhance users’

computational creativity.

Figure 1.4: Overview of AI-assisted Mechanism Design: An AI assistant accepts
the designer’s input and generates a distribution of conducive inputs which are then
inputted to synthesis solvers. The framework consists of synthesis solvers that allow
practical constraints like linear and nonlinear constraints on pivots into account. The
AI assistant provides feedback on the quality of input, resulting in a more transparent
problem formulation.

Figure 1.4 depicts the overview of AI-assisted framework. The key contribution

of the framework is in the development of an AI assistant which acts as an intermedi-

ary between designer and computational solvers. The assistant accepts deliberately

imprecise or inherently uncertain input from users and computes a distribution of

conducive inputs and feeds them to a synthesis solver to obtain a large variety of

acceptable solution concepts. The conducive distribution of inputs is generated by

state-of-the-art deep generative models that learn joint probability distribution of

various linkage parameters and their interdependence. This also enables us to answer

the following questions: 1) what are the infeasible aspects of the input and how to

modify them to make a more conducive input, 2) given a path or a motion task,

how likely it is that a particular type of mechanism can perform the task, and 3)

for a given task, what is the distribution of linkage parameters with similar coupler
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motions (or, paths).

In the case of the Path Generation problem, Ullah and Kota [11] and Wu et

al.[12] have tried to incorporate the prior on user input by means of finding lower

harmonic Fourier Descriptors of the path followed by computing link dimensions us-

ing optimization methods. Li et al.[13] have developed a Fourier descriptor-based

approach for approximate motion generation, which uses the same prior on coupler

path. These methods are relatively robust to spatial variations in input but suscepti-

ble to variations in timing information provided by the user. Sharma and Purwar [3]

have addressed this issue to some extent by providing a scheme to compute optimal

timing for the input points. However, the above methods are only defined for the

synthesis of four-bar linkages with revolute joints. In contrast to this, our approach is

general enough to condition any type of user input and scales to higher-order linkage

mechanisms and spatial robots. A key difference in the previous approaches and our

approach is that the conditioning on the input is performed by learning the joint

probability distribution of input parameters from a database of linkages instead of

relying on the fact that four-bar linkages produce curves which have specific harmonic

content.

In order to learn such joint probability distributions, we employ a recently

developed deep generative model called Variational Auto Encoder (VAE). It comprises

of two neural networks: 1) Recognition Model (also called Encoder) and 2) Generative

Model (also called Decoder). A trained VAE applies the learned prior probability

distribution on observed input, thus acting as a posterior inference model. Additional

benefits of using VAE are that the learned posterior inference model can also be used

for a host of tasks such as denoising, representation, and imputation.

Applications of powerful function approximators like neural networks are not

new to the domain of mechanism synthesis. Vasiliu and Yannou [14] have used Artifi-

cial Neural Network (ANN) to interpolate the map between the path and link lengths

9
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Figure 1.5: The framework accepts the task and the context. AI-assistant performs
task conditioning to compute a distribution of conducive inputs. Task conditioning
also provides feedback on the quality of inputs. Samples from this distribution are
fed to suitable synthesis algorithms to obtain a variety of concept solutions.

for Grashof four-bar linkages with revolute joints. Here, ANNs are mainly utilized

to memorize the mapping as a means to replace an atlas. Khan et al.[15] presented

an approach where an ANN is used for mapping between Fourier coefficients corre-

sponding to a coupler path and corresponding linkage parameters. Galan et al.[16]

have used a similar approach but instead of using Fourier Coefficients, they have used

wavelet descriptors to represent the shape of the path. All of the above methods use

ANNs just as a mapping tool from a closed coupler path to mechanism link ratios. In

contrast to the black box mapping approach of the above methods, we facilitate user

interaction with the network by means of interactive manipulation of latent space.

The approach taken by our methods is unsupervised and semi-supervised learning,

with an emphasis on representation learning and understanding the probability dis-

tribution of coupler trajectories.

The components of the AI-Assisted framework are depicted in Fig. 1.5. As it

can be seen in Fig. 1.5, the framework accepts Xtask and the context for the synthesis

problem. The context provides a secondary prescription in the form of fitness function

(fcontext(X)) that evaluates the fitness of a solution. For example, 1) it can be used

to prescribe the desired or restricted region for fixed pivots to lie on, 2) it can be

used to prescribe a restrictive region for coupler curve or desired speed profiles. The
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framework allows for any such differentiable fitness function of X that is known or

can be learned from data.

Next, Xtask is subjected to task conditioning. This is done as follows. The

framework captures the salient features z in the task by the means of variational

inference and computes a distribution of conditioned inputs for computational solvers.

The task is conditioned so that the likelihood of getting a desirable solution from the

solver is maximized. The desirable solution is defined as the linkage which is free of

defects and satisfies the conditions implied by the context. Here, we define feasibility

conditioning as modifying the task to make it more conducive for obtaining defect-free

solutions by synthesis. Whereas, the context conditioning is defined as modifying the

task such that it is more likely to satisfy the imposed context.

The framework allows flexibility in terms of task specification by incorporating

missing information required by computational solvers. For example, the framework

computes missing orientation information required by a motion generation solver.

Figure 1.6 depicts an example to demonstrate the efficacy of our approach, where we

have presented solutions for path generation problem using our motion generation

solver as used in the previous example; see Fig. 1.3. In the absence of using this

approach, the solver would mostly produce impractical and defective solutions for

general motion problems with a large number of poses. Thus, we have shown the

effectiveness of the conditioning and input imputation by constructing valid motions

from a crude input of path points. It should be noted that the main idea behind this

is not in solving the path generation problem using motion generation solvers, but to

introduce the idea of an intermediary that handles user’s incomplete and uncertain

input and communicates the necessary numerical subtlety to a generic, susceptible

computational solver. Lastly, the outputs are post-processed and the designer is

presented with a set of distributions of solutions, where each set consists of a concept

with different variations in linkage parameters. We define such an approach, where
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the input uncertainty is intelligently managed to generate a distribution of solutions,

as Variational Synthesis of Mechanisms.

The framework allows for various representations of Xtask. The framework

presents a novel image-based approach for path generation, which is particularly

amenable to mechanism synthesis when the input from mechanism designers is delib-

erately imprecise or inherently uncertain due to the nature of the problem. It models

the input curve as a probability distribution of image pixels and employs a probabilis-

tic generative model to capture the inherent uncertainty in the input. In addition,

it gives feedback on the input quality and provides corrections for a more conducive

input. The image representation allows for capturing local spatial correlations, which

plays an important role in finding a variety of solutions with similar semantics as the

input curve. Figure 1.7 shows an overview of this approach.

Although our approach can work with any number and type of linkages, we

have implemented the methods for following topologies 1) four-bar with all revolute

joints (RRRR), 2) slider-crank linkage (RR-PR) and its inversion (RR-RP) and 3)

Stephenson I and IIIa six-bar with revolute and prismatic joints 4) Janson’s Eight

bar.

The organization of the dissertation is as follows. Chapter 2 presents the al-

gorithmic developments that incorporate some of the practical constraints in a pre-

viously developed task-driven simultaneous type and dimensional synthesis frame-

work [17], [18]. chapter 3 presents a novel contribution to database-driven methods

for defect-free path and motion synthesis of planar linkages. Chapter 4 presents the

theory behind the choice of using generative models. Chapter 5 presents the ap-

plication of VAE in task conditioning, which is one of the key contributions of the

dissertation. Chapter 6 presents the end-to-end machine learning-based synthesis

solver that learns a conditional distribution of linkages with respect to the task.
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Clustering Module to present the user with distinct distributions of solution concepts.
Also, an End-to-End deep generative model is trained that conditions coupler paths
to linkage parameter distributions.

Raw

Input

Normalize

Discretize

Input Image

PL PL

Variational Auto Encoder Probable Inputs 

Linkage Database

Recognition Network Generative Network

Rec. Net   KNN

Queries

ons

Figure 1.7: Overview: Raw input is normalized and discretized into an image. This
image is passed through the recognition network of a trained VAE which computes
a probability distribution of latent features describing conducive variations of the
raw input. Samples from this distribution are queried to find nearest neighbors in a
dataset of four-bar and six-bar linkages. The linkages corresponding to the nearest
neighbors have coupler curves similar to the conducive variations.
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Chapter 2

Optimal Synthesis of Planar Four-bar Linkages for Extended Burmester

Problem

2.1 Introduction

According to an article by Prof. McCarthy [19], over the past forty years, a total

number of 2, 688 U.S. patents have been awarded that involve four-bar linkages, while

in the same period, the next natural extension to more complex linkages, viz., six-bar

linkages have been awarded a mere 84 patents. This is a clear demonstration of the

popularity and ubiquity of planar four-bar linkages. Therefore, it is not surprising

that the four-bar linkage synthesis and analysis problem still receives a considerable

attention of researchers.

Several text books, such McCarthy and Soh [4], Sandor and Erdman [5], Hunt

[6], Hartenberg and Denavit [7], Suh and Radcliffe [8], and Lohse [9] cover the science

and art of planar four-bar and higher-order linkages.

Kerle et.al.[20] have given a historical overview of the development of mecha-

nisms for motion generation. Despite a glut of literature on this topic, simultaneous

computation of type and dimensions and accommodating practical geometric con-

straint for the motion generation problem has not been explored much. Erdman et

al. in their seminal Mechanism Design and Analysis text [21] clearly mention that

assuming the wrong type (linkage topology and type of joints) to compute the dimen-

sions of a linkage system may result in either none or sub-optimal solutions.

The work presented in this chapter is a continuation of our research [1, 22, 17],



wherein we have presented a task-driven approach to simultaneous type and dimen-

sional synthesis of planar dyads for the motion generation problem. A four-bar linkage

is constructed as combination of any two of the synthesized dyads. This dyadic con-

struction simplifies the synthesis process and renders the method as modular building

block for synthesis of mechanisms with more links such as six-bar mechanisms [1]. By

using the concepts of kinematic mapping (Blaschke [23], Grünwald [24]) and planar

quaternions (Bottema and Roth [25], McCarthy [26]), we obtained a unified form of

kinematic constraints of the planar dyads and created an algorithm for unified type

and dimensional synthesis of planar four-bar linkages. This is accomplished via a

two-step process. The first step is algebraic fitting of image points on a pencil of

G-manifolds using Singular Value Decomposition (SVD). This pencil of G-manifolds

forms a candidate solution space for constraints accounted for in the SVD process. In

the second step, we impose two fundamental quadratic conditions on the candidate

solutions to extract the dyad types and their dimensions.

Ravani and Roth [27, 28] were the first to use kinematic mapping approach for

mechanism synthesis. Thereafter, Bodduluri and McCarthy [29], Bodduluri [30], Ge

and Larochelle [31], Larochelle [32, 33], Husty et al. [34], Hayes et al. [35, 36], Wu et

al. [37], Purwar and Gupta [38], and Shrocker et al. [39] have used this approach for

the motion generation problem.

The original contribution of the work presented in this chapter is in reformula-

tion of the above framework in a general way so that classic Burmester problem can

be extended to accommodate both pose- and other practical-geometric constraints,

and so that it solves problems which our previous approach could not solve. These

problems are 1) finding optimal approximate solutions for Burmester problem with no

or sub-optimal solutions, and 2) finding optimal linkages that minimize the algebraic

fitting error of non-linear geometric constraints. We note that in this work, we do not

restrict Burmester problem to only five poses. Burmester [40] showed that only a finite
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set of four-bars can be synthesized for five precision pose motion generation problem.

In this chapter, we show that other than poses, other practical geometric constraints

can also be accommodated. For more than five geometric constraints, typically only

an approximate motion synthesis can be performed. Holte et al.[41], Sabada et al.

[42], Venkataraman[43], have presented some techniques for mixed exact-approximate

synthesis of planar mechanisms, albeit only for poses. Larochelle[44] has presented

dimensional synthesis technique for solving the mixed exact and approximate mo-

tion synthesis problem for planar RR kinematic chains. Song [45] has presented Pole

Curve Transformation based approach for motion synthesis of planar mechanisms.

Al-Widyan et al.[46] have presented a numerically robust algorithm to solve the clas-

sic Burmester problem. Bourrelle et al. [47] presented a graphical user interface that

uses the algorithm developed in [46] to solve the classic Burmester problem.

In general, there are two basic approaches to linkage synthesis for motion gen-

eration problem: 1) precision pose approach, and 2) error minimization approach. In

this chapter, we use a combination of both methods in our framework.

Optimal synthesis of linkages is often a constrained non-linear and multi-modal

problem in a multi-dimensional design space. In case of optimal linkage synthesis, rel-

atively more work has been reported for path and function generation problem than

for motion generation. Mariappan and Krishnamurty[48] used a generalized exact

gradient method for planar mechanism synthesis. Vallejo[49] developed an optimiza-

tion method for planar mechanisms with lower pairs of any type which uses error

function as deformation of dimensions that mechanism has to undergo to perform

the task. Yao and Angeles[50] solved path-generation problem using least squared

error function. They employ contour method to find out all stationery points of

the problem. Kramer and Sandor [51] have presented a method of optimal design

of planar mechanisms called Selective Precision Synthesis (SPS). SPS can incorpo-

rate design requirements such as link ratios, fixed pivot locations, and transmission
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angle range. Gogate and Matekar [52] used method of differential evolution to find

optimal linkages based on three error functions which ensure that the mechanism is

crank rocker, branch and circuit defect free with minimized positional and angular

deviations. Venkataraman et al.[43] used tolerance based approach for four position

problem. They searched for optimal design parameters along suitable ranges of cen-

ter point curve. Cabrera et al.[53] have presented genetic algorithm on planar 4R

mechanism synthesis for its simple implementation and fast convergence. Hegedus et

al. [54] recently presented synthesis of spatial 6R linkages for interpolating four given

poses using factorization of motion polynomials. All of the above said methods first

select the type of linkage to be optimized, while our approach takes unified represen-

tation for all types of planar dyads into account. In contrast to other methods, which

directly use linkage parameters, we formulate the optimization problem in terms of in-

termediate parameters obtained by geometric fitting. This allows us to use a two-step

process wherein we first perform the least-squares fitting of the geometric constraints

and then use a Lagrange multiplier method with additional linear and non-linear

constraints to extract the dyad types and dimensions. This approach allows formu-

lation of an objective function consisting of squared error for the constraints to be

minimized, while keeping certain other constraints exactly satisfied. Ultimately, the

minimization procedure leads to a system of quadratic equations, which can be solved

using a Computer algebra softwares like Mathematica. Each real solution of this sys-

tem of equation corresponds to one optimum dyad; all such dyads are computed and

then combined pairwise to obtain a set of four-bar linkage solutions.

The organization of the chapter is as follows: Section 2.2 reviews the concept

of kinematic mapping and planar quaternions as a special case of dual quaternions.

Section 2.3 reviews unified form of kinematic constraints of the planar dyads as G-

manifolds in the image space, while section 2.4 presents various geometric constraints

in the image space. Section 2.5 presents how we algebraically fit various linear geomet-
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ric constraints to the G-manifolds using SVD. Section 2.6 presents the Lagrange Mul-

tiplier method to minimize error functions while keeping certain linear- or non-linear

constraints satisfied exactly. We finally present two practical examples in section 2.7.

2.2 Kinematic Mapping

A planar displacement consisting of a translation (d1, d2) and a rotation angle

φ from a moving frame M to a fixed frame F is represented by a planar quaternion

Z = (Z1, Z2, Z3, Z4) where (see [27, 26] for details),

Z1 = 1
2
(d1 cos φ

2
+ d2 sin φ

2
), Z2 = 1

2
(−d1 sin φ

2
+ d2 cos φ

2
),

Z3 = sin φ
2
, Z4 = cos φ

2
.

(2.1)

The components (Z1, Z2, Z3, Z4) define a point in a projective three-space called

the image space of planar displacements [27]. Then, a planar displacement represented

as a homogeneous transformation of point x = (x1, x2, x3) or line l = (l1, l2, l3) from

M to F can be given by

X = [H]x, (2.2)

[H] =


Z2

4 − Z2
3 −2Z3Z4 2(Z1Z3 + Z2Z4)

2Z3Z4 Z2
4 − Z2

3 2(Z2Z3 − Z1Z4)

0 0 Z2
3 + Z2

4

 ,
L = [H]l, (2.3)

[H] =


Z2

4 − Z2
3 −2Z3Z4 0

2Z3Z4 Z2
4 − Z2

3 0

2(Z1Z3 − Z2Z4) 2(Z2Z3 + Z1Z4) Z2
3 + Z2

4

 ,
where Z2

3 + Z2
4 = 1 and X = (X1, X2, X3) and L = (L1, L2, L3) are corresponding

point and line coordinates in F .

18



2.3 Generalized (G-) Constraint Manifold

In this section, we review a unified form of the kinematic constraints of four

types of dyads (RR, PR, RP, and PP) in the image space; see [1] for details. A

point X or line L on the coupler of a four-bar linkage can be geometrically constrained

in one of the following four ways: 1) for an RR dyad, the point is constrained to be

on a circle with center and radius given as homogeneous coordinates (a0, a1, a2, a3),

2) for a PR dyad, the point is constrained to be on a fixed line having coordinates

(L1, L2, L3), 3) for an RP dyad, a moving line (l1, l2, l3) is constrained to be tangent

to a circle (a1, a2, a3), and 4) for PP dyad, a point on line (L1, L2, L3) is constrained

to move along another line (2a1, 2a2, a3). In [1], we have shown that all of these

constraints reduce to a single quadratic equation in the Cartesian space. When the

fixed frame coordinates of point and line from Eqns. (2.2) and (2.3) are substituted

in this quadratic condition, we obtain following generalized equation:

p1(Z
2
1 + Z2

2) + p2(Z1Z3 − Z2Z4) + p3(Z2Z3 + Z1Z4)

+p4(Z1Z3 + Z2Z4) + p5(Z2Z3 − Z1Z4) + p6Z3Z4

+p7(Z
2
3 − Z2

4) + p8(Z
2
3 + Z2

4) = 0, (2.4)

where the eight coefficients pi are not independent but must satisfy two quadratic

conditions

p1p6 + p2p5 − p3p4 = 0, 2p1p7 − p2p4 − p3p5 = 0. (2.5)

This is because pi are related to the geometric parameters of the dyad by

p1 = −a0, p2 = a0x p3 = a0y, p4 = a1, p5 = a2,

p6 = −a1y + a2x, p7 = −(a1x+ a2y)/2,

p8 = (a3 − a0(x2 + y2))/4,

(2.6)

where (a0, a1, a2, a3) are the homogeneous coordinates of the constraint circle ex-

pressed in fixed reference frame and (x, y) are the coordinates of the circle point
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expressed in moving reference frame. Here, a0 is the homogenizing factor. Equa-

tion (2.4) represents a generalized quadric (G-manifold) in the image space whose

actual form would depend on the dyad type. For RR dyad, the quadric is a hyper-

boloid of one-sheet, while for other dyads, it is a hyperbolic paraboloid [26].

Inverse computation of these pi into geometric parameters is done as follows:

l1 : l2 : l3 = p2 : p3 : 2p8,

x1 : x2 : x3 = (p6p5 − 2p7p4) : −(p6p4 + 2p7p5) : (p25 + p24),

a0 : a1 : a2 = (p22 + p23) : (−p3p6 − 2p2p7) : (p2p6 − 2p3p7),

(2.7)

Eqns. (2.4) and (2.5) are said to define the constraint manifold of all types of

dyads (for details see [1]). For a PR dyad, we have a0 = 0 and therefore, p1 = p2 =

p3 = 0; for the RP dyad, we have p1 = p4 = p5 = 0; and for the PP dyad, we

have p1 = p2 = p3 = p4 = p5 = 0. In all of these cases, the quadratic conditions

in (2.5) are clearly satisfied. Thus, all planar dyads can be represented in the same

form by Eqns. (2.4) and (2.5), and we can determine the type of a planar dyad by

looking at the zeros in the coefficients pi (called signature of a dyad). This leads to

a unified algorithm for simultaneous type and dimensional synthesis of planar dyads.

In our approach, we first obtain the homogeneous coordinates pi, determine the dyad

type from the signature of coefficient array pi, and then compute the dyad parameters

using inverse relationships in (2.6). The coefficient array pi forms an eight-dimensional

vector, henceforth it is called a dyad-vector p.

2.4 Task Driven Geometric Constraints

In this section, we present various geometric constraints for the motion genera-

tion problem and show their representation in the image space. Some such constraints

can be classified in following ways: 1) pose (position and orientation) constraint on

the coupler, 2) constraint on moving or fixed pivot locations namely, point, line or

general quadratic curve.
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2.4.1 Pose Constraint

Precision pose synthesis problem requires coupler to go through given poses de-

fined by Cartesian space parameters (d1, d2, φ). Converting these parameters into pla-

nar quaternions (Z1p, Z2p, Z3p, Z4p) using Eq. (2.1) and then substituting into Eq. (2.4)

gives us a pose constraint expressed by,

p1(Z
2
1p + Z2

2p) + p2(Z1pZ3p − Z2pZ4p) + p3(Z2pZ3p + Z1pZ4p)

+p4(Z1pZ3p + Z2pZ4p) + p5(Z2pZ3p − Z1pZ4p) + p6Z3pZ4p

+p7(Z
2
3p − Z2

4p) + p8(Z
2
3p + Z2

4p) = 0, (2.8)

For the classic Burmester problem, five poses would be specified, each of which would

give one such equation.

2.4.2 Point Constraint

Specifying locations on fixed or moving pivots of the mechanism proves to be

useful in practice. Let (Xf ,Yf ) be one of these specified fixed pivot locations. Con-

straining each coordinate of pivot gives rise to one linear equation which in terms of

pi can be given as,

Xfp1 + p4 = 0,

Yfp1 + p5 = 0.
(2.9)

The above equations follow directly from Eq. (2.6), where Xf = a1/a0, Yf = a2/a0. It

is worth noting that all type of dyads may not satisfy the imposed point constraints.

This is due to fact that all RP dyads have dyad coefficients p1, p4, and p5 zero, so

they automatically satisfy (2.9) but do not necessary have fixed pivot on specified

location. This problem can be easily tackled by filtering out the extraneous solutions.

Moving pivot locations can also be provided in the same way as fixed pivot locations.

They too form two linear equations given by

xmp1 + p2 = 0,

ymp1 + p3 = 0,
(2.10)
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where (xm,ym) are the coordinates of moving pivot location in moving reference

frame.

2.4.3 Line Constraint

Line constraint for the fixed pivots constrains the center point (Xf , Yf ) of an

RR dyad to a line L1Xf + L2Yf + L3 = 0. Using inverse relationships in (2.6), we

obtain a linear equation in pi given by,

−L1p4 − L2p5 + L3p1 = 0. (2.11)

A similar constraint equation is obtained when the moving pivot of an RR dyad is

constrained to a line (l1, l2, l3) attached to the moving frame given by

−l1p2 − l2p3 + l3p1 = 0. (2.12)

2.4.4 Quadratic Curve Constraint

Let (Xf , Yf ) be the location of a fixed pivot of RR or RP dyad constrained to

lie on a general quadratic curve given by,

AX2 +BXY + CY 2 +DX + EY + F = 0 (2.13)

Then, substituting for (X = Xf = −p4/p1, Y = Yf = −p5/p1) into above Eq. (2.13),

we obtain an image space representation of the constraint as follows:

Ap24 +Bp4p5 + Cp25 −Dp4p1 − Ep5p1 + Fp21 = 0 (2.14)

The above is a homogeneous equation of a quadric in the image space and its degen-

erate forms reduce to the point and line constraints given in Eqns. (2.9) and (2.11).

A similar equation can be obtained when the moving pivot is constrained to the

quadratic curve of the form in (2.13). Without any loss of generalization, for the

demonstration purposes, let us look at an elliptical-curve constraint now.
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Consider an axisymmetric ellipse whose major axis is x1 and minor axis is y1.

Say, positive x1 axis makes θ angle with positive x-axis of fixed reference frame and

the origin of x1-y1 frame is at (xe, ye) with respect to fixed reference frame. Equation

of ellipse is given by

x2

r21
+
y2

r22
= 1, (2.15)

where r1 and r2 are radii of major and minor semi-axes and (x, y) are co-ordinates of

a point on the ellipse w.r.t. x1-y1 frame. These coordinates relate to the coordinates

in the fixed frame by

x = (X − xe) cos θ + (Y − ye) sin θ,

y = (−X + xe) sin θ + (Y − ye) cos θ
(2.16)

Substituting (2.9) and (2.16) into (2.15) gives,

((−p4 − p1xe) cos θ + (−p5 − p1ye) sin θ)2

r21
(2.17)

+
((p4 + p1xe) sin θ + (−p5 − p1ye) cos θ)2

r22
= p21

All RP dyads ( p1 = p4 = p5 = 0) trivially satisfy (2.17), so extraneous RP dyads

need to be filtered out. A similar constraint for moving pivots could be found out,

which is given by,

((−p2 − p1xe) cos θ + (−p3 − p1ye) sin θ)2

r21
(2.18)

+
((p2 + p1xe) sin θ + (−p3 − p1ye) cos θ)2

r22
= p21

All PR dyads ( p1 = p2 = p3 = 0) trivially satisfy (2.18), so extraneous PR dyads

need to be filtered out.

2.5 Algebraic Fitting of Linear Constraints

In this section, we show how we can solve the extended Burmester problem

via a two-step algebraic fitting process. A straight-forward extension of the classic
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Burmester problem may specify up to five linear geometric constraints of the forms

given by Eqns. (2.8), (2.9), (2.10), (2.11), (2.12). From all geometric constraints we

select five or less linear constraints and assemble them into a matrix given by,

[A]



p1

p2
...

p8


= 0, where [A] =



A11 A12 A13 A14 · · · A18

A21 A22 A23 A24 · · · A28

...
...

...
...

...
...

An1 An2 An3 An4 · · · An8,


. (2.19)

where constraints are linear equations in pi of the form,

n∑
j=1

Aijpj = 0, (2.20)

where Aij depends upon the type of ith input constraint i.e. pose-, line- or point-

constraint or an equivalent linear constraint. This system of equations is solved using

SVD, which minimizes the least-squares error of fitting. This is a zero-eigenvalue

problem and for n = 5 constraints, unique solutions for the dyad vector p can be

obtained, if they exist. As the matrix [A] is n× 8, where n ≤ 5, nullity of the matrix

is 8 − n. Hence, there are 8 − n singular vectors which define null space of solution

vectors given by {v1,v2, ..,vn}. Any vector p that lies inside this vector space is a

solution to algebraic fitting of n geometric constraints given by,

p = α1v1 + α2v2 + ...+ α8−nv8−n (2.21)

where αi are (8 − n) homogeneous parameters, thus without loss of generality we

can assume α1 = 1. For n = 5, the nullity of the matrix [A] is three, therefore,

three singular vectors corresponding to the smallest singular-values are selected to

form the dyad vector p. Substituting for p in the quadratic conditions given by

Eq. (2.5), one can solve for two unknowns α2, α3. Examining the signature of p,

the dyad type is determined and by inverse computation in (2.7), the mechanism

parameters are obtained. This fitting process also works for n > 5 cases, however,
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only an approximate solution may be obtained in this case. Typically, for large values

of n, such solutions mostly produce unsatisfactory results.

Now, consider the possibility that no real or unacceptable solutions emerge from

the above fitting process for n = 5 case. This is not an impractical scenario – very

often, for five pose problems, the fitting process yields none, non-Grashof, or defective

linkages. Another possibility is that the designer does not care about the five poses to

be interpolated exactly. Manufacturing errors in links and play at joints would never

lead to an exact interpolation of constraints anyways. For a pick and place operation,

the first and last poses may be critical, while in between poses may be desired to be

reached in a minimum-error sense. Moreover, the designer may want to introduce

more important constraints in the problem, such as adding a location for pivots. The

SVD also does not admit a non-linear constraint of the form (2.13). In that case, the

above formulation breaks down. We now need a method to relax certain constraints

while simultaneously satisfying exact constraints. In the next section, we show how

such problems are solved.

2.6 Error Functions and Constraints

This section presents the error function that is to be minimized during opti-

mization. The error function would be created from the relaxed constraints. If linear

geometric constraints like pose, line or point constraints are relaxed for minimization,

then the algebraic error of measure can be defined by substituting expression for p

from Eq. (2.21) into their respective constraint equations, which can be written as

f1(αi; i = 1 . . . 8− n) = k1α1 + k2α2 + ...+ k8−nα8−n, (2.22)

where ki are defined in terms of the parameters of dyad vector p and the known

constraint parameters; e.g., Xf , Yf are the known constraint parameters for the fixed-

pivot constraint.

Similarly, the algebraic error that evaluates distance of the fixed or moving
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pivots from a known ellipse is given by

f2(αi; i = 1 . . . 8− n) =

i=8−n,j=8−n∑
i=1,j=1

kijαiαj +

i=8−n,∑
i=1

kiαi + k0 (2.23)

where k0, ki, kij are also defined in terms of the parameters of dyad vector p and the

constraint parameters.

In addition, dyad vector parameters pi also need to satisfy two quadratic re-

lations in (2.5). Thus, two quadratic equality constraints obtained by substituting

(2.21) into (2.5) are of the form:

h1(αi; i = 1 . . . 8− n) =
∑i=8−n,j=8−n

i=1,j=1 k1ijαiαj,

h2(αi; i = 1 . . . 8− n) =
∑i=8−n,j=8−n

i=1,j=1 k2ijαiαj,

(2.24)

where k1ij, k2ij are defined in terms of dyad vector parameters pi.

2.6.1 Inequality Constraints

Sometimes user does not have strict requirements on exact location of the pivots

but a region where they should lie, such requirements can be modeled as inequality

constraints on pivots. One example for bounded regional constraint is the inner region

of an ellipse, given by

x2

r21
+
y2

r22
− 1 ≤ 0, (2.25)

Substituting such constraints into dyad vector parameters and subsequently in

coefficients αi using Eq. (2.21), we get a form given by

g =

i=8−n,j=8−n∑
i=1,j=1

kijαiαj +

i=8−n,∑
i=1

kiαi + k0 ≤ 0 (2.26)

2.6.2 Minimization using Lagrange multipliers

In the previous section, we created algebraic fitting function for various linear

and non-linear constraints. Now, we present the Lagrange multiplier method to solve

the optimization problem.
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For a task of n linear and m non-linear geometric constraints with u linear and

v non-linear error functions with corresponding weight ω1i and ω2j,

Minimizef(αi) =
i=u∑
i=1

f1i
2ω1i +

j=v∑
j=1

f2j
2ω2j (2.27)

subjected to constraints

h1(αi) = 0 h2(αi) = 0,

h3(αi) =

i=8−n,j=8−n∑
i=1,j=1

kijαiαj +

i=8−n,∑
i=1

kiαi + k0 = 0, (2.28)

where h3(αi) is a non homogeneous quadratic equation, which exists if nonlinear

geometric constraints like (2.17), (2.18) are present. Weights ω1i and ω2j can be

chosen by the user according to the synthesis requirements by weighing the relative

importance of the constraints. The method of Lagrange multipliers is used to obtain

a set of optimum solutions. In this method, the Lagrange objective function is defined

as,

F (αi, λi) = −f(αi)− λ1h1 − λ2h2 − . . . λ(m+2)h(m+2) − µg (2.29)

Here, there are (8 − n) number of unknowns αi and (2 + m) number of λi. Taking

partial derivatives with respect to all αi (except α1 which is 1) and λi, we obtain a

system of equations as follows:

∂
∂α2

(F ) = 0,

∂
∂α3

(F ) = 0,

...

∂
∂α(8−n)

(F ) = 0,

∂
∂λ1

(F ) = 0,

∂
∂λ2

(F ) = 0,

...

∂
∂λ(m+2)

(F ) = 0.

(2.30)
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for the case when inequality constraints are present, solutions also need to satisfy

Karush-Kuhn-Tucker condition [55] given by,

µ
∂

∂µ
(F ) = 0. (2.31)

while conditions for feasibility and optimality are respectively given by Eq. (2.32) and

Eq. (2.33) ,

g ≤ 0, (2.32)

µ ≥ 0. (2.33)

The system of polynomial equations comprised of Eq. (2.30) and Eq. (2.31) is

solved by computation of Groebner basis followed by eigen-system methods to extract

numerical roots. This is achieved using Wolfram Mathematica’s NSolve [56] routine.

Solutions obtained are subjected to feasibility test using Eq. (2.32) to obtain feasible

solutions, which give rise to a set of dyad vectors by substituting them into (2.21).

Examining the signature of the dyad vector p, we can determine the dyad type and

using the inverse relations in (2.7), we can obtain the mechanism parameters. A pool

of mechanical dyads is obtained from the set of dyad-vectors using inverse relations

given in (2.7). Any two of these mechanical dyads can be combined to form a four-bar

linkage as the solution for motion generation problem.

2.7 Examples

Now we present two examples, which demonstrate efficacy of our framework.

We do not presume linkage types and determine best types and dimensions from the

task requirements.

2.7.1 Optimal solution for Five positions with no exact solution

Table 2.1 contains five precision poses as the input to the classic Burmester

problem. Unfortunately for this problem, no exact planar four-bar solutions of any
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type exist. Thus, only approximate solutions can be computed by relaxing some

of the constraints. Our previous approach in [1] fails to find exact or approximate

solution for this problem because SVD can not find approximate solutions for fully

constrained problem. The new algorithm presented in this chapter can deal with such

problems. If the first and last poses are critical, algorithm can treat in-between poses

to be approximate. However, when one exact constraint is relaxed, solution space

increases by ∞1 along with number of optimization variables αi. Thus, the recom-

mended approach is to relax as few constraints as possible to keep the optimization

computationally cheaper. Hence, third precision pose is relaxed.

Now redefined task is to find a four-bar that interpolates 4 precision poses ex-

actly and approximates third pose as closely as possible. The sense of approximation

here is termed as algebraic fitting error of pose and constraint manifold of each dyad.

First step is the algebraic fitting of geometric constraints, which in this case are first

two and last two poses. Therefore, matrix [A] of size 4 × 8 is formed using (2.19)

and four singular vectors corresponding to near-zero singular values are obtained by

SVD which are tabulated in Table 2.2. None of these singular vectors correspond to

a mechanical dyad as they do not satisfy conditions in (2.5).

The error function is formed using Eq. (2.8), which evaluates algebraic fitting

error of third pose. For a pose, the algebraic error is given by Eq. (2.22). Thus, the

error function is

f = 0.224(−1 + 0.675α2 − 0.369α3 + 2.299α4). (2.34)

Since there are no nonlinear geometric constraints, f is subjected to two equality
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constraints h1 and h2 given by,

h1 = 0.20− 0.373α2 − 0.045α3 + 0.46α2α4

+0.13α3α4 − 0.33α4 + 0.15α2
2 + 0.011α2

3

−0.0095α2α3 − 0.16α2
4, (2.35)

h2 = −0.13 + 0.31α2 + 0.10α3 − 0.44α4

−0.22α2
2 − 0.013α2

3 + 0.39α2α4 − 0.079α2α3

−0.11α3α4 + 0.0067α2
4, (2.36)

Using steps presented in section 2.6.2, we form F given by

F = −f 2 − λ1h1 − λ2h2 (2.37)

and system of equations by partial differentiation given by,

∂
∂α2

(F ) = α2(−0.31λ1 + 0.43λ2 − 0.046) + α3(0.0095λ1

+0.079λ2 + 0.025)− 0.46α4λ1 − 0.39α4λ2

−0.16α4 + 0.37λ1 − 0.31λ2 + 0.068 = 0,

(2.38)

∂
∂α3

(F ) = α2(0.0095λ1 + 0.079λ2 + 0.025) + α3(−0.021λ1

+0.026λ2 − 0.014)− 0.13α4λ1 + 0.10α4λ2

+0.086α4 + 0.045λ1 − 0.10λ2 − 0.037 = 0,

(2.39)

∂
∂α4

(F ) = −0.32λ1α4 − 0.013λ2α4 − 0.53α4 + 0.33λ1

+α2(−0.46λ1 − 0.39λ2 − 0.16) + α3(−0.13λ1

+0.10λ2 + 0.086) + 0.44λ2 + 0.23 = 0,

(2.40)

∂
∂λ1

(F ) = −0.20 + 0.37α2 + 0.044α3 + 0.33α4

−0.15α2
2 − 0.011α2

3 − 0.46α2α4

+0.0094α2α3 − 0.13α3α4 + 0.16α2
4 = 0,

(2.41)

∂
∂λ2

(F ) = 0.13− 0.31α2 − 0.10α3 + 0.44α4

+0.22α2
2 + 0.012α2

3 − 0.39α2α4

+0.078α2α3 + 0.10α3α4 − 0.01α2
4 = 0

(2.42)
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Table 2.1: Example 2.7.1: Pose Data

Poses X Y φ (degree)
Pose 1 -5.74803 -0.00787402 88.5679
Pose 2 -4.12598 0.795276 2.16642
Pose 3 -2.72441 1.67717 356.968
Pose 4 -1.54331 0.433071 1.03102
Pose 5 1.22835 -0.590551 345.624

Solving this system of equations using Mathematica’s NSolve routine produces two

sets of real solutions given by,

α2 = 0.502, α3 = −1.79, α4 = −2.47,

α2 = 1.20, α3 = −0.505, α4 = 0.997.
(2.43)

Dyad-vectors are computed by substituting these solutions in (2.21). Table 2.3

contains these two dyad vectors. The four-bar linkages obtained by assembling these

two dyads with coupler is shown in Fig. 2.1, where we can clearly see that coupler

approximates third pose while interpolating remaining poses.

Table 2.2: Example 2.7.1: Four singular vectors obtained after SVD of the matrix [A]
of size 4× 8.

Dyad Vector p1 p2 p3 p4 p5 p6 p7 p8
p1 -0.018 -0.251 0.517 -0.398 0.0223 0.0361 0.498 0.509
p2 0.00770 0.428 -0.323 0.504 -0.0222 -0.0626 0.482 0.468
p3 0.0287 0.0807 0.111 0.148 -0.012 0.977 -0.0397 0.0138
p4 0.0756 -0.162 0.024 0.190 0.964 -0.00903 -0.00775 0.0122

2.7.2 Optimal Linkage for Four Precision Poses with Region Constraint

Figure 2.2 shows five positions of a landing gear moving from the landing po-

sition to the retracted position. Table 2.4 contains position and orientation data for

five poses. It is desirable that fixed pivots should lie inside the circle of radius 2.3

with center located at (3.33, 2.04). The task is to synthesize a mechanism which
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1

Figure 2.1: Example 2.7.1: Optimal four-bar mechanism that minimizes algebraic
fitting error for third pose. Although second pose lies on different circuit, this Grashof
type four-bar produces desired continuous motion from first to last pose.

Figure 2.2: Example 2.7.2: Five landing gear positions are shown where the third
position can be relaxed. Allowed region for fixed pivots of mechanism is also shown.
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Table 2.3: Example 2.7.1: Two optimum dyad-vectors obtained as result of optimiza-
tion

Vector p1 p2 p3 p4 p5 p6 p7 p8
s1 0.4175 1.025 5.818 1.388 0.8691 17.21 7.760 8.773
s2 0.08080 0.007451 0.07404 0.3656 0.9573 0.2468 0.4554 0.4875

interpolates through precision poses (1,2,4,5) and minimizes the algebraic error for

the third pose while keeping fixed pivot locations inside the allowed region as shown

in the figure.

First step is to extract all four geometric constraints, i.e. four precision poses

and form matrix [A] using Eq. (2.19). Here n = 4 which means solution space consists

of 4 singular vectors which are obtained using SVD and tabulated in Table 2.5. Once

this linear algebraic fitting is done, optimization problem can be formulated.

The error function is linear error function f1 for third pose, which is evaluated

using Eq. (2.22). Substituting singular vectors into dyad coefficients followed by

substituting them in terms of αi using Eq. (2.21), we get final objective function

given by

f = f 2
1 , (2.44)

where f1 = −0.0598α2 + 0.0294α3 − 0.100α4 + 0.0876. The circular region for fixed

Table 2.4: Example 2.7.2: Pose Data

Poses X Y φ (degree)
Pose 1 -0.0125 -0.0374 66.3
Pose 2 0.303 0.634 35.5
Pose 3 0.599 1.83 352.
Pose 4 0.268 2.30 331.
Pose 5 0.606 1.31 22.2
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Table 2.5: Example 2.7.2: Four singular vectors obtained after SVD of the matrix [A]
of size 4× 8. The vectors form basis for the null space

Vector p1 p2 p3 p4 p5 p6 p7 p8
p1 -0.585 -0.0211 -0.506 0.165 0.134 -0.350 0.368 0.313
p2 0.0640 -0.330 0.190 -0.804 0.236 -0.264 0.194 0.204
p3 -0.280 0.0484 -0.466 -0.398 0.232 0.603 -0.136 -0.329
p4 -0.137 0.145 0.469 0.250 0.747 0.229 0.259 0.0111

pivots is modeled as an inequality constraint using Eq. (2.25) and (2.26) given by,

g = 0.091α2
2 + (0.25α3 + 0.11α4 + 0.25)α2

+0.35α3
2 + 0.049α4

2 + α3(0.043α4 + 1.0)

−0.048α4 − 0.19 ≤ 0

(2.45)

Objective function also has two quadratic equality constraints given by,

h1 = 0.058α2
2 + (−0.25α3 + 0.17α4 − 0.36)α2 − 0.34α3

2

−0.041α4
2 + α3(0.23α4 − 0.38)− 0.033α4 + 0.29,

h2 = −0.29α2
2 + α2(−0.15α3 − 0.074α4 − 0.048) + 0.20α3

2

+α3(0.18α4 + 0.12)− 0.46α4
2 − 0.11α4 − 0.36

(2.46)

We follow steps presented in section 2.6.2 and form Lagrange objective function F

given by,

F = −f12 − λ1h1 − λ2h2 − µg (2.47)

and obtain equations by partial differentiation as well as equation corresponding to

Table 2.6: Example 2.7.2: Four optimum dyad-vectors obtained as result of optimiza-
tion

Vector p1 p2 p3 p4 p5 p6 p7 p8
s1 0.0254 0.192 -0.202 -0.0965 0.00562 0.723 -0.387 -0.490
s2 0.276 -0.406 0.211 -0.425 -0.161 -0.561 0.251 0.360
s3 0.315 -0.356 0.189 -0.397 -0.318 -0.598 0.129 0.324
s4 0.208 -0.302 0.141 -0.335 -0.321 -0.691 0.134 0.368
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Karush-Kuhn-Tucker condition as follow:

∂
∂α2

(F ) = 0 = (−0.12α2 + 0.25α3 − 0.17α4 + 0.36)λ1 + (0.57α2

+0.15α3 + 0.074α4 + 0.048)λ2 − (0.18α2)µ

−(0.25α3)µ− (0.11α4)µ− 0.25µ+ 0.060

(2.48)

∂
∂α3

(F ) = 0 = λ1(0.25α2 + 0.69α3 − 0.23α4 + 0.38) + λ2

(0.15α2 − 0.41α3 − 0.18α4 − 0.12)− 0.25α2µ

−0.71α3µ− 0.043α4µ− 1.0µ− 0.029

(2.49)

∂
∂α4

(F ) = 0 = λ1(−0.17α2 − 0.23α3 + 0.081α4 + 0.033)

+λ2(0.074α2 − 0.18α3 + 0.92α4 + 0.11)− 0.11α2µ

−0.043α3µ− 0.097α4µ+ 0.048µ+ 0.10

(2.50)

∂
∂λ1

(F ) = 0 = −0.058α2
2 + (0.25α3 − 0.17α4 + 0.36)α2

+0.34α2
3 + 0.041α2

4 + α3(0.38− 0.23α4) + 0.033α4 − 0.29
(2.51)

∂
∂λ2

(F ) = 0 = 0.29α2
2 + (0.15α3 + 0.074α4 + 0.048)α2

−0.20α2
3 + 0.46α2

4 + α3(−0.18α4 − 0.12) + 0.11α4 + 0.36
(2.52)

µ ∂
∂µ

(F ) = 0 = µ(−0.091α2
2 + (−0.25α3 − 0.11α4 − 0.25)α2

−0.35α2
3 − 0.049α2

4 + α3(−0.043α4 − 1.0) + 0.048α4 + 0.19)
(2.53)

Solving these equations followed by filtering on the basis of feasibility using

Eq. 2.32 yields four unique and feasible solutions tabulated in Table 2.7. All of these

solutions satisfy Karush-Kuhn-Tucker Condition for optimality given by Eq. (2.33).

Dyad vectors are calculated by substituting these solutions into (2.21) and are given

in Table 2.6. Any of these four dyad-vectors when substituted in Eq. (2.4) forms a

quartic equation, which when projected on hyperplane Z4 = 1 represents a quadric

surface. Fig. 2.4 shows intersection of hyperboloid and hyperbolic paraboloid formed

from first and second dyad-vectors. The intersection curve represents workspace of

the corresponding four-bar linkage. Table 2.8 contains the minimized algebraic fitting
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Table 2.7: Real Solutions for αi, λi and µ

Dyad α1 α2 α3 α4 λ1 λ2 µ
s1 1 -0.40 -0.027 1.09 0.0 0.0 0.0
s2 1 -2.04 -1.81 2.06 0.0 0.0 0.0
s3 1 -3.64 -4.24 5.37 0.0 0.0 0.0
s4 1 5.08 -2.58 -2.94 0.0 0.0 0.0

error of objective function. From this table, we can see that dyad s4 has least pose

fitting error. All dyads except s1 are of RR type dyads while s1 is an RP dyad.

Figure 2.3 shows a branch defect free four-bar mechanism formed by combining s1

and s2.

2.8 Conclusion

In this chapter, we presented a task-driven approach to unified and optimal

synthesis of planar four-bar linkages for extended Burmester problem. In this for-

mulation, various geometric constraints are treated equivalently, which in turn leads

to a much simpler two-step based algorithm for computing planar dyads of four-bar

linkages. Original contributions of this chapter have been into reforming a mixed

exact-approximate algebraic fitting problem into problem of task oriented optimal

fitting of algebraic manifold. The framework presented here can accommodate lin-

ear as well as non-linear equality and inequality geometric constraints and minimize

objective functions that can be expressed in terms of dyadic parameters. Although

adding non-linear geometric constraints increase computational complexity, computer

algebra software like Mathematica could be used to compute solutions of quadratic

Table 2.8: Optimality Evaluations for Dyads

Dyad 3rdPose-Fitting Error Inequality Constraint
s1 0.0102 -0.000650
s2 0.0415 -0.00126
s3 0.0212 -0.000424
s4 -1.8×10−8 -0.396
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Figure 2.3: Example 2.7.2: First and second dyad in Table 2.6 are combined to form
the linkage shown. It can be clearly seen that coupler curve fairly approximates the
third pose while fixed pivots are inside the allowed region.

Figure 2.4: Example 2.7.2: Image-Space representation of intersection of third and
fourth optimal constraint manifolds from Table. 2.6. Also shown are five image points
as dark spheres representing the five poses; four of them lie exactly on the intersection
of the two surfaces, while one is closest possible.
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system of equations in a reasonable amount of time. Experimentations show that

Mathematica takes less than 3 seconds on a MacBook Pro with 2.4GHz Intel core i5

processor and 8GB RAM for computing solutions for the system of seven quadratic

equations. The framework also preserves previously achieved real-time solutions for

linear geometric constraints with no optimality criterion. Two examples demonstrat-

ing computation of optimal type and dimensions of dyads that minimize task oriented

objective function are presented.

This work has been published in ASME Journal of Mechanisms and Robotics,

2017 [2].
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Chapter 3

Defect-Free Kinematic Synthesis by Partial Shape Matching in a

Clustered Database

3.1 Introduction

A large majority of mechanism synthesis methods are based on the precision

position approach. This approach is a clever approximation trick to solve the above-

mentioned problems, where the task is discretized into precision positions. These

positions instead of the actual task, are required to be interpolated or approximated

by the designed mechanism. However, this representation loses critical information

about the actual continuous task and can lead to mechanisms with the order, circuit

and branch defects; see Chase and Mirth[10] for a thorough discussion on such defects.

Unfortunately, these defects render mechanisms useless for their intended application.

For an example, consider a motion generation problem shown in Fig. 3.1, where

the objective is to synthesize a four-bar mechanism that can perform the prescribed

motion going continuously from position 1 to 5. Instead of dealing with an infinite

number of positions from initial to final one, currently this problem is simplified to

design a four-bar that goes through all the five positions without any guarantee on

the in-between motion. Burmester [40] showed that a four-bar can go through at most

five precision positions and even in the best case scenario, there are a limited number

of solutions. In this case, only one solution is obtained as shown in the Fig. 3.1.

Although it can be seen that the coupler of the four-bar passes exactly through five

precision positions, it can not do so without changing the circuit. A circuit represents



1

2

3

4
5

Prescribed Motion

Coupler Circuit 1

Coupler Circuit 2

Figure 3.1: The four-bar mechanism obtained using the precision position approach
suffers from circuit defect, as no coupler circuit passes through all precision positions.
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an assembly mode in which the mechanism is put together and to transition from one

circuit to another, the mechanism has to be taken apart and reassembled. This

phenomenon is called circuit defect in the linkage, which makes the linkage useless

for the prescribed task. To deal with it, an approach proposed in the literature is to

tweak precision positions in a brute-force way within some tolerance until a solution

is found. Even if a circuit defect-free solution is found, the coupler motion in-between

the precision points may go through undesired poses or in an incorrect order. This is

an outcome of discarding the functional aspect of continuous motion and turning the

problem into an interpolation problem bereft of important details.

Instead of brute-force search within tolerance regions, some approaches apply

separate constraints and form an optimization problem of non-differentiable objective

function. These methods employ metaheuristic algorithms like Differential-evolution

(DE), Particle Swarm Optimization (PSO), Cuckoo Search (CS). Cabrera et al.[53]

used Genetic Algorithm for optimization in mechanism synthesis. Sardashti et al.[57]

used PSO towards the defect-free synthesis of four-bar linkage with joint clearance

for path generation problem. Ebrahimi and Payvandy[58] presented an application of

Imperialist Competitive Algorithm (ICA) for synthesizing path generating four-bars

having desired workspace limits. Bulatovic[59] used Cuckoo Search for solving the

problem of optimum synthesis of a six-bar double dwell linkage.

Path synthesis methods based on Fourier analysis do take the continuity infor-

mation of coupler path into account. However, most of them are defined only for

closed loop curves. Ullah and Kota[11] have presented an invariant approach towards

representation and synthesis of closed loop paths through shape optimization. They

use a combination of global and local search methods for optimizing Fourier Deviant

function to compute the dimensions of planar four-bar linkages without an initial

guess. Wu et al.[12] presented a method based on finite Fourier series for open and

closed path generation of four-bar mechanisms. In the case of motion generation, Li
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et al.[13] have developed a Fourier descriptor-based approach for approximate mo-

tion generation. Buśkiewicz et al.[60] used the curvature of the coupler curve for

path synthesis using Genetic Algorithms. Khan et al.[15] presented on approach

where an artificial neural network is used for mapping between Fourier coefficients

corresponding to a coupler path and corresponding linkage parameters.

Instead of the global search, an alternative approach is to start from a good

initial guess based on an atlas and use local search methods. We adopt this approach

and combine with our novel formulation to generate a diverse set of conceptual de-

sign solutions. McGarva[61] took the earliest approach towards creating a library for

coupler trajectories based on the harmonic analysis. Wandling[62] has presented an

atlas-based approach, where coupler paths and motions are stored in terms of Fourier

Transforms. Input motion is searched for neighbors based on Euclidean distances

of Fourier Transforms. Yue et al.[63] presented a similar approach of path genera-

tion using P-Type Fourier Descriptor applicable for open curves. In their approach,

a task curve is transformed into normalized Fourier coefficients and queried for the

nearest neighbor search. The best match is returned as the solution to the input.

Chu et al.[64] presented an atlas-based method for synthesizing spatial four-bar link-

ages for function generation problems, where orientation data is stored in terms of

Fourier descriptors. The above methods generate data based on uniform sampling

in the linkage parameter space. Given the highly nonlinear mapping between link-

age parameters and coupler trajectory, this way of sampling leads to a nonuniform

sampling of trajectory space, which causes under-representation of possible motions.

We address this issue by employing log-normal distribution in the linkage parameter

space to generate the data samples. Then, we perform a compact clustering of the

data using machine learning techniques. A hierarchy is created in the database by

means of clustering, where the top level comprises of data points called cluster cen-

ters, which are representative of the cluster points in lower levels. Wandling [62] and
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Parametric 

   Curve

Motion 

 Data

Figure 3.2: The Machine Learning approach begins by creating an invariant signature
for the path and the motion data, which facilitates a compact and hierarchical clus-
tered database and an auto-encoder Neural Network trained to elicit good, defect-free
solutions or subjected to local, fast optimization. The results are defect-free concep-
tual design solutions for input problems.
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Yu et al. [63] have built libraries with all possible coupler curves, where one curve

is broken down into many segments for creating data for partial curves. In contrast

to this, we need to store only one curve that represents all the segments in it. This

is because our representation facilitates part-to-whole matching. None of the other

previous methods facilitate this partial matching of open motion curve into another

open or closed curve, which significantly contributes to providing a large number of

solutions, and reduces the data requirement even further.

In this chapter, we represent the given task as a parametric continuous function

of poses or path-points. The objective is to find a linkage which has a coupler motion

or path compatible with the given task. We develop a compatibility measure invariant

to similarity transformations so that position, scaling, and orientation of the given

path or motion do not convolute the optimization. Next step is to conduct a search in

the space of linkage parameters to find linkages with coupler motions compatible with

the prescribed task. Although global search methods can be applied for finding solu-

tions, we employ an efficiently clustered database and Powell’s local search method to

come up with a variety of different solutions. The motivation behind using a clustered

database is rooted in the broader objectives of machine design. Mechanism synthesis

is a critical part of the conceptual design phase, which requires synthesis method to

be prolific in terms of concept generation to 1) realize the potential of attainable de-

sign possibilities, and 2) have the agility to adapt a design to evolving requirements.

Our method only deals with the coupler curves and is not dependent on the linkage

type. Thus, it is readily scalable to any type of planar linkage.

The synthesis routine starts by creating a continuous parametric representation

of a prescribed path or motion. We employ pattern recognition and computational

shape analysis to create an invariant signature for the prescribed path and motion. A

query representing an invariant signature of the prescribed path or motion is raised

for k nearest neighbors among cluster centers in the database. These k neighbors, if
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needed, are subjected to fine-tuning by local optimization to obtain a set of defect-

free solutions. The objective function that drives the synthesis process computes a

distance measure of dissimilarity between the task and the coupler motion or path

generated by current linkage parameters. This distance measure of dissimilarity in-

herently requires continuity of motion, thus ensuring that the output mechanism is

defect-free throughout the task. Figure 3.2 illustrates an overview of our method,

which is codified in Algorithm 1.

The original contributions of the work are in 1) creating a perceptive prob-

lem formulation for path and motion generation, which solves the issues associated

with the precision position approach, 2) exploiting the nonlinear nature of the rela-

tionship between the linkage parameters and coupler motions to create a sensitive,

wide-ranging, compact, and efficient database with hierarchical clustering, and 3)

developing a novel algorithm for partial matching of motions and paths which signif-

icantly improves the synthesis.

Rest of this chapter is organized as follows. Section 3.2 presents the computation

of motion and path signatures. Section 3.3 is comprised of evaluation criterion for

signatures based on the shape similarity, which leads to the formulation of error

function for optimization. Section 3.4 discusses the nature of objective function via

sensitivity analysis at a singularity. Section 3.5 presents the database generation and

clustering using auto-encoders for efficient sampling and query operations. Finally,

two case studies are presented in section 3.6 to illustrate the efficiency and efficacy of

the method.

3.2 Signatures of Coupler Path and Motion

Focus of the chapter is on a novel method for mechanism synthesis that takes

a parametric motion (x : x(t), y : y(t), θ : θ(t)) or path (x : x(t), y : y(t)) as the

input, and returns defect-free linkages that produce similar motion or path. The

45



Algorithm 1: Planar Linkage Synthesis

Input : Task Motion {xi, yi, θi}Ni=1 or Path{xi, yi}Ni=1

Output: Linkage Parameters l: l1, l2, ...
1 signature = calculateSignature(Input);
2 distances = [];
3 for centerPoint in clusterCenters do
4 distances.push(getDistance(signature, centerPoint))
5 end
6 kNeighbors = getNeighbors(distances, k) for neighbor in kNeighbors do
7 if threshold < neighbor.distance then
8 return neighbor.LinkParameters
9 else

10 return Optimize(neighbor.LinkParameters)
11 end

12 end
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input is transformed into a representation, termed as a signature, which is invariant

to similarity operations, viz. reflection, rotation, translation, and scaling. Signatures

for path and motion are termed as path signature and motion signature, respectively.

For calculating the path signature, we use the formulation developed by Cui et.al[65].

Consider a motion given in parametric form as, x : x(t), y : y(t), θ : θ(t), where

θ(t) is the change in orientation along the path with respect to initial orientation. It

should be noted that θ(t) is a continuous curve with domain (−∞, ∞) in contrast to

conventional domain i.e. [−π, π].

Curvature κ(t) of the path (x : x(t), y : y(t)) and its integral K(t) is given by,

κ(t) =
ÿ(t)ẋ(t)− ẍ(t)ẏ(t)

(ẋ2(t) + ẏ2(t))(
3
2
)
, (3.1)

K(t) =

∫ t

0

|κ(t)|dt, (3.2)

where ẋ(t), ẍ(t) are first and second order derivative with respect to parameter t. As

an example, the parametric motion could be a B-spline motion as shown in Fig 3.3.

We compute κ(t) and K(t) along the direction of t using Eq. (3.1) and Eq. (3.2),

respectively. Figure 3.4 shows computed curvature and its unsigned integral for the

coupler path shown in the Fig. 3.3. It can be seen that the curvature is small at the

start, increases as the curve bends along the path and drops once again as the path

straightens out. It is obvious that the curvature plot will reverse if the direction of

parameterizations reverses, while the integral is a monotonically increasing function.

Now, we re-sample the curvature at equal intervals of K(t), which is equivalent

to plotting κ vs K in Fig 3.5(a). This is done by finding the parameter values of t

where K changes uniformly. For practical purposes, we find an array of the parameter

t such that K increments by 0.1. For each value of t in that array, we compute κ(K)

and θ(K) and store it as the path and motion signatures respectively. We note that

there is a one-to-one mapping between t and K. Although it may seem natural to

use planar quaternions [26, 25] for representing motion and finding its signature, it
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Figure 3.3: a) The path of the input motion along with direction of parametrization,
b) motion components x(t), y(t), θ(t) are plotted against parameter t.
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Figure 3.4: Curvature and its unsigned integral for the path shown in Fig. 3.3
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Figure 3.5: Path and motion signatures of the motion shown in Fig. 3.3

couples orientation with the path in such a way that the signatures formed no longer

remain invariant to similarity transformation.

These signatures are invariant under similarity transformations; for proof see[65].

We know that curvature changes inversely to the scale of the curve, so when it is inte-

grated along the scaled curve, the scale factor cancels itself out. Reflection operation

produces flipped path signature, but motion signature remains invariant. Figure 3.5

shows the path and motion signature obtained for the motion depicted in Fig. 3.3. It

is important to note that the signature depends on the direction of parameter t. The

procedure of signature calculation presented in this section is given in the Algorithm

2.

3.3 Signature Matching and Error Function

The signatures obtained in previous steps contain important information about

the shape of the trajectory. In this section, we formulate functions that evaluate

the similarity between two trajectories based on their signatures. These distance

functions can be used as an error metric, which can be minimized using optimization

methods.
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Algorithm 2: Calculate Invariant Signatures

Input : Twice Differentiable Parametric Representation of Motion
(x : x(t), y : y(t), θ : θ(t))

Output: signature //discretized signal in form of an array
1 κ(t) = ComputeCurvature(x, y) using Eq. 3.1
2 K(t) = IntergrateCumulatively(κ(t)) using Eq. 3.2
3 motionSignature = []
4 pathSignature = []
5 for i = 0→ max(K) do
6 tmp = (value of t corresponding to which K has value i)
7 i = i+ 0.1
8 motionSignature.push(θ(tmp))
9 pathSignature.push(κ(tmp))

10 end
11 return PathSignature, MotionSignature
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3.3.1 Partial Matching of Path Signatures

When a path query is raised, it can be very useful to know whether this path

matches with a part of a path from the database. This subsection presents a method

for determining this partial similarity.

Let us consider two coupler paths; namely Part and Whole as shown in Fig. 3.6.

Let p and W be their signatures respectively, where W completely contains p as shown

in Fig. 3.7. The orientation information shown in Fig. 3.6 is ignored for path matching.

It will be used later for matching of motion signatures. The partial matching works

as follows:

(1) p and W are expressed in terms of arrays and W must contain more points

than p.

(2) p is slided with offset index j along W .

(3) For each offset j, we compute normalized cross-correlation function [66] given

by,

Cn(j, p,W ) = |
psp∑
i

(W (i+ j)− W̄ (j : j + psp))(p(i)− p̄)√∑psp
i (W (i+ j)− W̄psp)

2∑psp
i (p(i)− p̄)2

|, (3.3)

where Cn(j, p,W ) is the normalized cross-correlation value when p is matched against

W at jth index; psp is length of the array p and W̄ (j : j + psp) is mean of the values

of array W between index range of (j, j + psp).

Here, p acts as a template that tries to find the best match against W while

sliding over it along j. Domain of Cn(j, p,W ) is [0, 1], where 1 represents the complete

embedment of p inside W , i.e., Part is identical to a portion of Whole.

The maximum score of the matching Cnmax(p,W ) represents similarity of the

template in W , and offset index j at which maximum occurs is the starting point for

matching. As we know that the signature reverses with reversal of the direction of t,

we compute the correlation along both directions and select the best matching score,
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Figure 3.6: Part path is formed by trimming whole path followed by translation and
scaling. Arrows indicate the increasing direction of parameter t.

offset index and the matching direction of sampling. Figure 3.8 depicts normalized

cross correlation function over the sliding domain j for Part and Whole curves.

3.3.2 Partial Matching of Motion Signatures

This section presents how a template motion can be checked against other mo-

tion for potential matching. Consider Part and Whole motions shown in Fig. 3.6.

Let p andW be the motion signatures of the Part and Whole motions, respectively as

shown in Fig. 3.9. Similar to partial matching of path signatures, the cross-correlation

function is given by,

E(j, p,W ) =

psp∑
i

((W (i+ j)− W̄ (j : j + psp))− (p(i)− p̄))2, (3.4)

where E(j, p,W ) is the dissimilarity value when template p is matched to W at jth

index. Here p tries to find the best match against W while sliding over it. Similar

to path signature, motion signature is dependent on the direction of t. Thus, we

compute the dissimilarity for both directions and choose whichever is the least, i.e.,

Emin(p,W ). Figure 3.10 depicts dissimilarity function over the sliding domain j. In

this case, as shown in Fig. 3.10, we find that the first point is the matching point,
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Figure 3.9: Motion Signatures of the trajectories shown in Fig. 3.6. The domain as
well as range of motion signature is invariant to similarity transformation.

which is consistent with the fact that we have essentially sliced the whole motion to

obtain the part motion.

3.3.3 Objective Function for Synthesis

The functions in Eq. (3.3) and (3.4) presented in the sections 3.3.1 and 3.3.2

can be used as the error measure for path and motion synthesis of any planar linkage,

where the objective is to find a linkage that produces a motion whose part or whole

corresponds to the target motion (or path). Thus, we can formulate the path synthesis

problem as,

arg min
l,Wi

(1− Cnmax(p,Wi)), (3.5)

where l is the vector of linkage parameters for particular planar linkage, p is signature

the of task path taken as the template and {Wi}si=0 is the signature set of all s coupler

paths generated by the linkage corresponding to l. In case of four-bar, l : l1, l2, l3, l4, l5,

where li is link ratio of ith link shown in Fig 3.11.

Similarly, we can formulate motion synthesis problem as,

arg min
l,Wi

(Emin(p,Wi)). (3.6)
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Figure 3.10: Dissimilarity function of two motion signatures along both directions.
It can be seen that the exact match is found at j = 0, where the template is fully
embedded inside the other motion.
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Figure 3.11: Parametric representation of four-bar linkage with all revolute joints.
We set l0 = 1 and one fixed joint at the origin of the global frame along with making
the fixed length of four-bar parallel to the x-axis.

Here, E is the Dissimilarity function from Eq. (3.4) while p and {Wi}si=0 are motion

signatures instead of path signatures.

Objective function evaluation step consists of calculation of coupler motion or

path and finding its dissimilarity score. It is important to note that representation

obtained in Section 3.2 reduces the number of parameters in optimization. This opti-

mization problem can be solved using search methods which do not require gradient

computation. We can employ global optimization methods such as differential evolu-

tion at the start, and local optimization approach, such as Powell’s method towards

the end for faster convergence[11].

Considering the highly nonlinear nature of the problem, finding a good initial

guess proves to be daunting. In addition, generating a large set of solutions requires

a diverse and large number of good initial guesses. Thus, we exploit machine learning

techniques to create a database for finding many good initial guesses or the solution

itself. Section 3.5 presents the details of this approach.
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3.4 Sensitivity Analysis of Signatures

Due to the complex relationship between parameter space and generated motion,

small changes in linkage parameters can produce large and discontinuous structural

changes in the generated motions. For example, a small change in crank length (l1)

can open a previously closed coupler path. Most of the methods based on Fourier

descriptors cannot capture the continuity at such singular locations, which adversely

affect the optimization process. In contrast to this behavior, the signatures derived in

Sec. 3.2 have a smooth transition at these singular locations due to shape similarity

between closed and just opened curve or motion.

To illustrate this via an example, we perform sensitivity analysis in the vicinity

of a singularity as follows: A four-bar with link ratios (l1 : 0.55, l2 : 1, l3 : 1.5,

l4 : 1, l5 : 1) is subjected to gradual change in parameters l1 and l3 by the amount

(-0.2, 0.2) in steps of 0.01. The link ratios are chosen such that, small changes in

some parameters lead to the topological change in the coupler curve. Error function

between motions of new and initial four-bar are calculated using Eq. (3.6). Figure 3.12

shows coupler motion of some of the four-bars, while Fig. 3.14 depicts their motion

signatures. Please note that these two figures show the effect of changing only one

parameter l1. It can be seen from Fig. 3.12 that there exists a discontinuity in

the topology of coupler curves even though their shapes have a continuous shift.

Our method captures this continuity, which is shown by error function evaluations

depicted in Fig. 3.13, where it is visible that surface is well behaved in the singularity

region. This error function accounts for changes to both the parameters l1 and l3.

3.5 Clustered Database of Planar Linkages

Having an invariant representation facilitating partial matching greatly reduces

data required to sample all possible types of shapes of coupler motion. We have

built a database of planar four-bar linkages with revolute joints as an example, but
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Figure 3.12: Coupler Motions of the four-bar linkage with variation of parameters l1
and l2. It can be seen that motion topology changes from close-loop Grashof to open
loop Triple-Rocker.
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Although open loop breaks at l1:0.55, l3:1.5, there are no spikes of error function in
the region near singularity, as the shape is very similar between the two topologies.
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Figure 3.14: Motion signatures obtained by steps given in 3.2. Although topology
difference is even more evident in this representation, it also signifies the similarity
pattern between them.
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the approach is the same for any planar motion generating mechanism. We gener-

ate this database comprising of 40, 000 linkages while taking following aspects into

consideration:

(1) Sampling should maximize the uniformity of its distribution over the space

of four-bar coupler motions.

(2) Data generation should be parallelized.

(3) It should be scalable to higher-order linkages.

Figure 3.11 represents parametric representation of four-bar linkage with parameters

(l1, l2, l3, l4, l5). As mapping between four-bar linkage parameter space and coupler

motion space is highly nonlinear, uniform distribution over linkage parameter space

does not necessarily mean uniform sampling over coupler motion space. Thus, an

efficient approach would be to sample more in the regions where sensitivity is max-

imum. We have observed that whenever the link ratios of four-bar linkage are close

to 1, the sensitivity of shape of a coupler motion is higher than otherwise. Thus, we

have chosen Log Normal probability distribution (µ = 0, σ = 0.6) for selecting the

link ratios : (l1, l2, l3) as shown in Fig. 3.15, and Normal Distribution (µ = 0, σ = 2)

for (l4, l5).

We use machine learning techniques such as clustering and data-compression

using auto-encoder neural networks to come up with good initial guesses for local

optimization. First, We cluster the database using a hierarchical clustering algorithm.

Then, we find a representative data point in each cluster called cluster centers and

form their set. This set of cluster centers represent a diverse group of linkages. When

a query is raised in the database, the first step is to search for neighbors in the set of

cluster centers. This often yields a diverse set of neighbors and is used as the set of

independent initial guesses for local optimization.
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Figure 3.15: Probability Distribution function used in random sampling for parame-
ters l1, l2 and l3.
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3.5.1 Dimensionality Reduction using Auto-Encoders

Each data point in the database consists of a discrete signature, which is kept to

be of 100 float digits. In order to have efficient query operations, we perform hierar-

chical Clustering; a method that summarizes and creates a hierarchy in the database.

Clustering in higher dimensions suffers from Curse of Dimensionality[67], thus we

first perform dimensionality reduction using Auto-encoder Neural Networks. Auto-

encoder is a powerful mapping model, which learns to encode the input data in very

compact representation and can reconstruct the input with minimal error; perform-

ing much better than Principal Component Analysis[68]. This nonlinear mapping by

auto-encoder can greatly improve the representation of data for clustering [69]. Fig-

ure 3.16 shows a Neural Network architecture similar to the one we designed for the

task. Our architecture consists of 100 neurons in the input and output layer, while

the five hidden layers have (80, 50, 10, 50, 80) neurons respectively. Each neuron in

the hidden layer is activated by Rectified Linear Unit (ReLU) activation function.

In ith hidden layer, d(i−1) dimensional vector output of the previous layer h(i− 1) is

fed as input to produce d(i) dimensional output hi. Input-output relationship of a

layer is given by,

hi = ReLU(Wihi−1 + bi), (3.7)

ReLU(x) = max(0, x), (3.8)

where Wi is weight matrix with dimensions (di, d(i−1)) and bi is d(i) dimensional bias

vector of ith layer, which are computed in the process of training. Auto-encoders are

trained to reconstruct the input. In this way, each layer encodes the input, which is

sufficient for the next layers to reconstruct the output. The objective of training is
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to find out the set of weights and biases that minimizes the error loss given by,

arg min
W,b

N∑
i=0

||Xi − X̃i||2, (3.9)

where Xi is input, X̃i is reconstructed output and N is number of training examples.

Once a network is trained, the output of the bottle-neck layer (hib) represents

the compressed feature space (Z). As bottleneck layer has 10 neurons and input is

a 100-dimensional vector, it is evident that information is compressed by a factor of

10, while achieving 95% reconstruction accuracy as the result of training. Standard

clustering algorithms are performed on this latent1 space for better clustering[69].

We use Agglomerative Clustering, a method of hierarchical clustering, which is an

approach to partitioning clustering for identifying groups in the dataset. Ward[70]

criterion is used for clustering, which minimizes the variance of the clusters being

merged. The distance metric used for clustering is the Euclidean distance in the

latent space. Although the more accurate distance metric is the distance function

discussed in the section 3.3, it is very expensive to calculate it for the entire database.

Signatures with O(m) points take O(m logm) time for each comparison and there are

O(N2) number of comparisons to be made for the database of N points.

Now, when the user raises a query, we use the distance function from the sec-

tion 3.3 for finding k nearest neighbors among 1500 cluster centers. If a cluster center

is not sufficiently close, we descend into its corresponding cluster to find the closest

data point. Motion with highest similarity score is returned along with its corre-

sponding linkage parameters. If required, the parameters are fine-tuned to match

the query using local optimization methods. Computationally, on a 2.4 GHz Core i5

MacBook Pro with 8 GB memory, every query takes 23 seconds on average to find

the sorted list of nearest neighbors among cluster centers.

1 compressed output of bottleneck layer.
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Figure 3.16: A small-scale version of the Auto-Encoder. This network takes 5-
dimensional input in the input layer. At each encoder layer, the input is compressed
into a vector of lower dimensions, the lowest at the bottleneck layer.
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3.6 Case Studies

This section presents two case studies presenting the effectiveness of our ap-

proach for path and motion synthesis applications.

3.6.1 Path Generation

In the design phase of a rehabilitation device that assists people to stand from

sitting position, it is required to generate linkages that can execute a sit-to-stand

(STS) trajectory of the hip joint as shown in Fig. 3.17. Table 3.1 presents the dis-

cretized path data. As our approach requires parametric representation of path, we

first fit a cubic B-Spline with cord length parametrization through path data points

to generate parametric curve shown in Fig. 3.17. We compute its path signature by

the steps mentioned in Algorithm 2 and raise the query for nearest neighbors among

1500 cluster centers of our database. The distance metric for finding neighbors among

cluster centers is 1−Cnmax in Eq. (3.5). Table 3.2 tabulates the link ratios correspond-

ing to obtained nine nearest neighbors. Next step is to compute actual parameters

according to position, scale, and orientation of the path. It is done by comparing

analogous points found by the offset index j in Eq. 3.3. Figure 3.18 shows the first

eight four-bar mechanisms corresponding to nearest signatures to path signature of

input. It can be clearly seen that these linkages generate highly accurate paths for

the sit to stand activity. It is important to note that every solution is a result of

partial matching of coupler paths, and otherwise would be very hard to search using

other atlas-based approaches that only have the whole-to-whole matching facility.

3.6.2 Motion Generation

The task is to find a pool of linkage systems that can perform snow-shoveling

with a motion shown in Fig. 3.19. The motion data is tabulated in Table 3.3 to which

we fit a B-spline with cord length parametrization in order to get the parametric
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Table 3.1: Case Study 1 : Path Data

Point x y Point x y
1 -7.81 -9.65 10 0.28 -1.31
2 -6.42 -9.81 11 0.64 1.07
3 -5.14 -9.62 12 0.98 2.73
4 -3.72 -8.99 13 1.47 4.30
5 -2.62 -8.14 14 2.73 6.58
6 -1.75 -7.13 15 3.46 7.41
7 -0.91 -5.67 16 4.07 7.95
8 -0.32 -4.10 17 4.70 8.41
9 -0.02 -2.92 18 5.32 8.76

Table 3.2: Linkage Parameters of Nine Nearest Neighbor Paths

linkage l1 l2 l3 l4 l5 1− Cnmax
1 0.79 2.78 1.70 1.35 -0.71 0.0011
2 1.59 1.28 0.96 -1.74 -1.13 0.0015
3 0.99 0.71 1.66 -1.07 -0.85 0.0016
4 0.51 0.48 1.11 -0.02 -0.15 0.0017
5 0.93 0.75 2.18 -1.65 0.96 0.0018
6 1.29 1.98 1.02 -1.83 -1.33 0.0019
7 0.63 1.42 1.03 -1.90 -0.38 0.0020
8 0.66 0.85 0.84 -1.40 -0.13 0.0021
9 1.81 0.55 1.08 0.14 -0.04 0.0022

Figure 3.17: Case Study 1: Path traced by hip joint during Sit-to-Stand Motion.
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Figure 3.18: First eight linkages in the table 3.2 and their resultant coupler paths.
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Figure 3.19: Case Study 2: User specified motion necessary for the snow shoveling
task.
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Figure 3.20: Case Study 2 - Query Result: Motion signatures in the dataset with
highest similarity.
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Figure 3.21: Case Study 2: First eight linkages in the table 3.4 and their resultant
coupler motions.
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representation of motion. The task can also be treated as a finite position motion

generation and solved for valid solutions. We try with our real-time computational

methods of algebraic fitting[1],[2] but obtained solutions suffer from circuit defect,

which is not surprising as those methods do not account for the continuity of input

positions. Also, It is obvious that the coupler should not drop the snow during

its entire motion except at the end. Although the prescribed motion entails this

information, precision point approach cannot capture it.

Now we employ the approach presented in this chapter. The first step is to

calculate the motion signature of the task motion using steps mentioned in Algorithm

2. For that, we follow the steps given in section 3.2 to obtain the motion signature

depicted in Fig. 3.20. Next, we raise the signature query for nearest signatures among

cluster centers of the database. Fig. 3.20 shows nine nearest neighbor signatures along

with the task signature. Table 3.4 presents the linkage parameters corresponding to

the nearest neighbors along with their distance score from the task. Coupler motions

of these linkages have a part, which matches with the shape of the input motion

query. Actual scaling and orientation of the linkage can be found out easily by

comparing analogous points, which are given by the offset index j that corresponds

to minimum distance(Emin) in Eq. (3.4). Figure 3.21 depict the solutions obtained

after scaling and orienting the linkage to match required motion. All of these linkages

satisfactorily perform the input task without any defect. As ground or fixed pivot

locations should lie above the ground, all solutions except the 4th solution are suitable

for the task. Although Fig. 3.21 shows that 5th and 7th solution may slightly interfere

with the ground, it can be rectified by lifting the mechanism slightly up or making

small changes in coupler dimensions. In light of these results, we can say that this

approach produces a large variety of solutions, which otherwise would be very hard

to find using the precision point approach.
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Table 3.3: Case Study 2: Pose Data

Pose x y θ Pose x y θ
1 0.03 0.07 6.06 6 1.39 0.47 0.73
2 0.38 0.01 6.18 7 1.36 0.77 1.03
3 0.71 -0.00 0.04 8 1.18 1.06 1.36
4 1.02 0.06 0.22 9 0.88 1.27 1.74
5 1.26 0.22 0.46

Table 3.4: Case Study 2: Linkage Parameters corresponding to Nine Nearest Neighbor
Motions

linkage l1 l2 l3 l4 l5 Emin
1 1.28 0.88 1.77 -1.32 1.79 0.0186
2 1.05 1.14 1.09 0.35 -0.60 0.0362
3 2.06 2.28 1.84 -1.71 0.51 0.0378
4 1.52 1.22 1.46 0.05 0.12 0.0402
5 1.12 0.99 0.57 0.05 0.68 0.0467
6 1.58 0.88 1.17 0.08 -0.22 0.0481
7 2.17 0.38 2.87 -3.51 1.39 0.0578
8 1.55 0.79 0.85 -0.80 -0.52 0.0585
9 0.91 1.40 1.93 -0.93 -0.83 0.0605
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3.7 Conclusion

The methods based on precision point approach do not capture continuity of the

task. This causes the solutions to have the branch, circuit and order defects. Also,

the formulation fails to detect undesired properties of the coupler motion in the region

between precision points. Thus, we present a perceptive problem formulation, by con-

sidering the entire prescribed task. We solve the proposed formulation by employing

machine-learning techniques and generate a large number of defect-free conceptual

designs. The approach is highly data-efficient due to similarity invariant represen-

tation and partial matching. Sensitivity analysis indicates that the complexity of

the objective function is well behaved at the singular locations. The hierarchically

clustered database provides an efficient query search. Finally, the effectiveness of the

presented approach is showcased by two case studies. Every solution presented in

the examples section is a result of part-to-whole matching. The other atlas-based

approaches facilitate only whole-to-whole matching, hence they would need a very

large amount of data to find these results.

Although the partial matching metric is more accurate, it is expensive in terms

of computation cost. Thus, we use the Euclidean metric in the latent space of com-

pressed data for the hierarchical clustering of the database. The problem formulation

is invariant with respect to translation, orientation, and scaling. Hence, constraints

like geometric restrictions on pivots have to be addressed after finding feasible solu-

tions for the task. The approach is general enough to be extended to higher order

linkage systems for which there are even fewer methods available for synthesizing

defect-free solutions. However, the database size increases with the number of links

in the mechanisms. The solution to this problem is to use learning based methods,

where the pattern is learned instead of storing all of the information. This forms

one of the basis of the proposed approach. This work has been published in ASME

Journal of Computing and Information Science in Engineering, 2019 [71].
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Chapter 4

Generative Models for Mechanism Synthesis

4.1 Introduction

In our quest to develop this framework, it is critical that the framework has

the ability to understand salient aspects of the linkage parameters and create diverse

design concepts for a given task. This chapter presents our step in this direction by

formulating a generative model of linkage parameters.

A generative model is based on generative learning principal, which does not

just passively observe the events it experiences, but constructs its own perceptions

about them. For example, training a generative model for coupler curves of four-bar

linkage formulates an understanding of the kind of curves a four-bar linkage can or

cannot generate. This understanding is useful in various tasks such as input denois-

ing, modification or imputation. Here, input imputation is defined as the process

of adding the missing information in the input which is necessary for the solver to

process. Generative models encapsulate the salient information about the observed

data which is essential for tasks involving recognition, representation and computa-

tional creativity. In this work, we have used VAE [72] as our generative modeling

framework. The parameters of generative models are much less in number than that

of the data it is trained on. Thus, the model is forced to capture salient attributes

and their variation to generate the data similar to it. This encapsulation of salient

features is utilized in tasks that require an understanding of the data. In our case,

we use it in providing the user a high-level control on manipulating different aspects



of input data and to manage input uncertainties.

This chapter is organized as follows. Section 4.2 reviews neural network ar-

chitectures used in the research. Section 4.3 presents the theoretical formulation of

VAE.

4.2 Review on Neural Network Architectures

4.2.1 Convolutional Neural Networks

Capturing patterns in the images is a well-researched topic; see Forsyth and

Ponce [73]. The computer vision literature has witnessed a vast amount of research

ranging from classical computer vision approaches to deep convolutional networks.

Classical computer vision approaches use hand-crafted feature extractors for cap-

turing spatial correlations, whereas deep convolution networks learn these feature

extractors from the training data.

Convolutional Neural Networks (CNNs) are constructed to capture the spatial

structure of the input [74]. CNNs consist of a set of learnable filters. In the 2D case,

these filters can be represented by 2D matrices, whose coefficients are updated at each

step of the training process. At the time of inference, each CNN filter is convolved

around the image. A high score is reported for a strong pattern match between the

filter and input. The high score gets passed on to the next layer through max pool

operation.

In simple words, the output of each layer in CNN is an agglomeration of scores

for various learned filters used during the convolution. This ability enables CNN

to learn low-level spatial features like edges in the initial layers. As the layers go

deep, the composition of simple features constitutes highly complex spatial structures

depending upon the training data.

Convolution Operation Convolutional layer use convolution operation be-

tween two entities. In the continuous case, the convolution of two functions f and g
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Figure 4.1: A filter is a 2D matrix whose coefficients are the learnable parameters of
the convolution network. During convolution, each of such filter it is convolved on
the input followed by nonlinear ReLU activation resulting in k such 2D matrices as
shown by the middle entity. Next, the output is max pooled to formulate the output
to be passed on to the next layer.

is given by,

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

f(t− τ)g(τ)dτ. (4.1)

In the discrete case, it is replaced by the sum

(f ∗ g)(n) =
∞∑

m=−∞

f(n)g(n−m) =
∞∑

m=−∞

f(n−m)g(m) (4.2)

Here, g is called a kernel function. In 2D discrete case, g can be represented via a 2D

matrix which has support on {(−M,−N), . . . , (M,N)}. Then, convolution is given

by

(f ∗ g)(x, y) =
M∑

m=−M

N∑
n=−N

f(x− n, y −m)g(m,n). (4.3)

Equation (4.3) has a very simple geometric interpretation as shown in Fig. 4.1. A 2D

filter of size (f , f) is slid along the image with stride s. Before each sliding action, a

sum is conducted and stored into an output tensor at a location governed by number

of strides. The final outcome of such operations is a 2D matrix. This entire process is

repeated for k number of filters resulting into k number of 2D matrices as shown in the

figure. In CNN, the learning parameters are the coefficients of kernel matrices. These

coefficients are updated via the Backpropagation algorithm in a stochastic gradient

descent method of optimization. For more details; please see see [75], [76].
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Table 4.1: Recognition Network Architecture

Layer Filter Count Filter Size Stride Output Shape Activation
Convolution 1 32 (11, 11) (1,1) (64, 64, 32) ReLU
Max Pooling 1 - (2,2) (2,2) (32, 32, 32) -
Convolution 2 64 (5, 5) (1,1) (32, 32, 32) ReLU
Max Pooling 2 - (2,2) (2,2) (16, 16, 64) -
Convolution 3 128 (3, 3) (1,1) (16, 16, 128) ReLU
Max Pooling 3 - (2,2) (2,2) (8, 8, 128) -

Flatten 1 - - - 8192 -
Fully Connected - - - 100 -

Split - - - (2, 50) (-, exponential)

4.2.2 CNN-VAE Architecture for Image Representation of Coupler

Curves

The input to the encoder is a 64×64 image. This input is fed to three stacks of

convolutional-MaxPooling layers. The output of the convolutional layer is first passed

through ReLU activation before it can be max pooled. Max pooling layer passes the

highest activation in the filter window to the next layer. The hyper-parameters for

each layer are given in Table 4.1. After three such layers, the output is flattened into a

single vector, which then is connected to a single fully connected layer which outputs

two vectors representing µ and log σ of 50 dimensions each. Vector z is obtained by

sampling a multivariate Gaussian distribution with mean µ and standard deviation

σ. This vector is passed to the generative model as an input.

The generative model architecture is composed of transpose-convolution layers

to finally output a tensor similar to that of image. The architecture and hyper-

parameters are given in Table 4.2.

4.3 Theory of Variational Auto Encoders (VAE)

VAE [72] is a neural network architecture that learns to approximate the true

distribution of an observed data x. In this work, different models of VAE are trained

to learn different observed data, thus x can represent different quantities for different
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Table 4.2: Generative Network Architecture

Layer Filter Count Filter Size Stride Output Shape Activation
Fully Connected - - - 1024 ReLU

Reshape - - - (8, 8, 16) -
Transpose Convolution 1 128 (3, 3) (2,2) (16, 16, 128) ReLU
Transpose Convolution 2 64 (5, 5) (2,2) (32, 32, 64) ReLU
Transpose Convolution 3 32 (11, 11) (2,2) (64, 64, 32) ReLU
Transpose Convolution 3 1 (3, 3) (1,1) (64, 64, 1) Sigmoid

Figure 4.2: Recognition Model encodes the observed data X into probabilistic latent
coding z of dimension much smaller than x. In this case, we assume a multivariate
Gaussian distribution for z. Generative Model takes samples from this distribution
to generate output x̂.

Convolution ReLU Max Pool Transpose Convolution

Recognition Network Generative Network

Figure 4.3: CNN-VAE Architecture for Image Representation of Coupler Curves. For
encoder, each hidden layer consists of convolution, ReLU and max pooling operation.
For decoder each hidden layer consists of transposed-convolution and relu operation.
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VAEs. Depending upon the quantity that x represents, x can have different dimen-

sions. For example, if a VAE is trained on the coupler path dataset, then x represents

coupler paths and will be denoted by Xpath vector
1 or Xpath image

2 . Whereas, if VAE

is trained on coupler motions or four-bar linkage parameters, then x would represent

coupler motions (Xmotion vector) and four-bar linkages (Xfourbar), respectively. x can be

a set of points or tensor representing images.

Figure 4.2 shows a representative architecture of VAE. In this architecture,

the Recognition Model encodes the data into the probability distribution of latent

variables, while the Generative Model is responsible for generating new data or re-

producing trained data. In the middle of this figure, there is feature space encoded

by the variable z, which seeks to capture the essence of the input data. However, as

opposed to Auto Encoder architecture in which z is a discrete variable, in the VAE,

the z is determined via a probability density function.

Let us assume that the d dimensional data x is highly structured and occupies

a much smaller k dimensional space. We know that a k dimensional unit Gaussian

distribution can be mapped into any k-dimensional distribution through a nonlinear

mapping. In other words, it can be said that the data x is generated by some natural

process that maps a k dimensional variable z to d-dimensional variable x. We try to

mimic this process with an unknown parametric generative model based on hidden

variable z, given that probability distribution of z is unit Gaussian, .

pr(z) = N (0, 1), (4.4)

x = G(z; θg), (4.5)

where θg are weight parameters of the neural network that acts as the generative

model. The variable z is called the latent variable, which contains salient information

of the observed variable x. We would like to infer salient attributes z based on

1 When the path is represented as a sequence of points
2 When the path is represented as images
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observed x, which can be expressed by conditional probability pr(z|x)

pr(z|x) =
pr(x|z)pr(z)

pr(x)
, (4.6)

where the abbreviation pr(A) represents probability of variable A. Unfortunately,

computing probability of x (i.e., pr(x)) is usually intractable. As it involves computing

the integral
∫
pr(x|z)pr(z)dz. However, we can apply variational inference [77] to

estimate the joint probability distribution pr(z|x). We approximate pr(z|x) by a

tractable distribution q(z|x), which we define such that it can be computed by a

neural network Q.

µ, σ = Q(x; θe), (4.7)

q(z|x) = N (µ, σ) (4.8)

Here, N (µ, σ) is a multivariate Gaussian distribution function with mean µ and vari-

ance σ. Now, we want to find parameters of Recognition Model Q(x) that predict

the distribution q(z|x) such that it is very similar to pr(z|x). Then, we can use it to

perform approximate inference of the intractable distribution.

The objective is to find parameters θg, θe of G(z) and Q(x) respectively such that

our model generates samples as close as true observed distribution and distribution

q(z|x) is as close as true distribution p(z). This is achieved by training the neural

network models for maximizing the lower bound of the marginal likelihood (LELBO),

which is given by,

LELBO = EQ(z|xi;θe)[(log(p(xi|z)))−DKL(Q(z|xi; θe)||p(z))] (4.9)

Here, the first term on RHS represents reconstruction likelihood and the second term

is called Kullback-Leibler divergence (KL divergence) [78] which ensures that our

learned distribution Q(z|x; θe) is similar to the true prior distribution p(z). Since we

assume that p(z) is a Gaussian distribution, the lower bound of marginal likelihood

becomes,

LELBO
(xi) = −(x̂i − xi)2 − (

k∑
i

σi
2 + µi

2 − log(σi)− 1) (4.10)
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The training objective is given by,

arg min
θe,θg

(−LELBO) (4.11)

For further details please see [72]. The training objecting maximizes the lower

bound of marginal likelihood

Once, entire VAE is trained, the recognition model and generative model can

be used separately or together depending upon the application. In what follows, we

describe the details of the Recognition and the Generator Models.

4.4 Recognition Model

The architecture shown in Fig. 4.2 consists of a recognition model, which is an

ANN. The inputs are passed through dropout [79], which randomly skips a connection

between input and the first hidden layer with a probability of 0.1. This small amount

of uncertainty in the input helps in learning robust patterns present in the input.

The Recognition model is comprised of hidden layers, which finally produce two zdim

dimensional vectors representing mean and variance of latent attribute z. The hidden

layers can be convolutional layers or fully connected layers depending upon the nature

of observed data. Convolutional layers are often the preferred choice when dealing

with images. This is due to the nature of convolution operation which connects only

the neighboring neurons to capture the local pattern.

The Output of the Recognition model is a multivariate probability distribution

of the latent variable, which captures the salient attributes of the data. Random

samples drawn from this distribution are passed to the Generator network. In the case

of training via the Back-Propagation algorithm, gradients are passed from generator

to recognition model by the means of Reparameterization trick [72]. Recognition

model effectively captures the approximate posterior inference (pr(z|x) of the input

data and thus can be used for tasks such as recognition, denoising, representation

and visualization purposes.
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4.5 Generator Model

Parameters of this neural network are learned to map a latent vector to a recon-

struction, which would exhibit similar latent attributes if passed through the recog-

nition network. Thus, the generative model can generate data whose probability

distribution is similar to that of training data. The architecture of this model starts

with an input layer that receives the latent vector and passes through single or mul-

tiple layers of neurons culminating into the original size of the observed data. The

middle layers can be deconvolutional or fully connected layers that upscale the input

they receive from the previous layer.

4.6 Variants of VAE

Denoising VAE VAE networks can be used to remove noise from input data.

This is done by adding noise to the input data while training. However, the generator

is forced to produce original noise-free samples by defining the reconstruction loss

between the reconstructed image and the original noise-free image. This forces the

recognition network to encode robust features from the data.

Conditional VAE Until now, we have seen VAE with unsupervised learning

architectures, i.e., which requires unlabeled data for training. C-VAE is trained to

learn the conditional distribution of an observed variable with respect to an explic-

itly observed property (or, label) y. This is achieved by small modifications in the

aforementioned VAE architecture. Instead of only providing with observed data, the

recognition network accepts concatenated input of x and y. Moreover, the generator

also receives a concatenated input of z and y. This grants C-VAE additional infor-

mation for the variational inference task. This can be used to generate samples that

are highly associated with the given y at the time of generation.
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Chapter 5

Computational Creativity and Task Conditioning

5.1 Introduction

The task in this dissertation is defined as the input a solver consumes in kine-

matic synthesis. For motion generation, the task is a set of poses1 that describe the

intended motion. In the case of path generation, the task is a set of points describing

the path. Since the task is devoid of knowledge about the outcome of solvers, there

is no way of knowing if the task is ill-posed. The task conditioning is the process in

which the task is modified to make it more conducive for the solvers. In addition,

the task conditioning can also include informed modification for satisfying the desired

context. This chapter presents the details on how such informed modifications are

achieved using a data-driven strategy. Section 5.2 presents the details of the process.

Section 5.3 presents data preparation and representation for motion and path tasks.

Section 5.7 presents examples of feasibility conditioning of tasks. Section 5.9 presents

how a context function can be learned in a data-driven way.

5.2 Task Conditioning Overview

To such modifications, it is imperative to possess knowledge about the properties

of the task. This knowledge is expressed as a prior probability distribution, often

simply called the prior. This work uses Variational Auto-Encoders (VAE) to learn

this prior by learning from a set of real coupler trajectories of randomly constructed

1 combination of positon and orientation



linkages. Thus, the recognition model of a VAE is trained to compute a maximum a

posterior probability (MAP) estimate of latent features for the given input given by,

µ, σ = Q(Xtask), (5.1)

z ∼ N (µ, σ). (5.2)

Here, z is a sample from the recognized latent distribution. This distribution can

be thought of as a distribution of recognized properties of coupler curves that were

observed in the task by recognition model.

Then, the generative model of VAE generates few samples from approximate

marginal likelihood distribution of recognized latent features given by,

X̂ ∼ G(N (µ, σ)). (5.3)

Here, X̂ is a sample from a distribution computed by approximate marginal inference

for a given input task Xtask and is given by,

X̂ ∼ pr(X|Xtask) ≈
∫
pr(X|z)pr(z|Xtask)dz. (5.4)

Intuitively, it represents a modified task after applying a prior function which was

learned in a data-driven way. VAE computes a distribution (pr(X̂|X) of such modified

tasks, which are then inputted to synthesis solvers. These modified tasks are termed

as Variational Inputs.

5.3 Representation of Tasks

This section presents the details of the normalization and representation of tasks

in various formats. In this work, we showcase the conditioning of tasks for path and

motion generation problems.

First, consider a database of coupler paths formed by planar linkages. Each cou-

pler path is an ordered collection of m points sampled uniformly throughout the entire

rotation of the crank, where each point has x and y coordinate. Thus, each coupler
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curve Xpath vector is {xj, yj}mj=1 and each coupler motion Xmotion vector is {xj, yj, θj}mj=1

for motion data. Both of the task representations are first normalized before feeding

to VAE.

5.3.1 Data Normalization

First, each coupler trajectory is normalized with respect to scale and position.

This is done by subtracting the means (x̄, ȳ) and dividing by the root mean squared

variance in Cartesian X- and Y -directions. Next, the trajectory is rotated such that

its principal component axes are aligned with the coordinate axes. The principal

component axes are the eigenvectors of the covariance matrix of a point cloud data

that defines the trajectory. The covariance matrix C of a point cloud of m 2D points

{xj, yj}mj=1 is given by,

C =

 Cxx Cxy

Cyx Cyy

 , (5.5)

Cxx =
1

m

m∑
i=1

(xi − x̄)(xi − x̄), (5.6)

Cyy =
1

m

m∑
i=1

(yi − ȳ)(yi − ȳ), (5.7)

Cxy = Cyx =
1

m

m∑
i=1

(xi − x̄)(yi − ȳ). (5.8)

Figure 5.1 depicts the normalization procedure for two couple paths.

Another common approach is to treat this sequence of points {xj, yj}mj=1 as a

one dimensional temporal signal with parameter t given by,

CC = {x(t), y(t)}

This formulation allows for applying various signal processing techniques like

Fourier Analysis. While this type of modeling has many advantages which are evident

by the success in path generation [12],[11], it fails to capture spatial correlations that

are not implicit in temporal correlations.
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Coupler Curve Normalized

Figure 5.1: Each curve is normalized for position, scale and orientation.

5.3.2 Representing Task as an Image

The proposed image-based representation allows us to capture those correlations

in exchange for losing temporal correlations between the input sequences. However,

it can be argued that the ordering is embedded in the spatial distribution of pixels

since unlike typical computer vision applications, such as facial recognition, which

have a true 2D set of pixels for images, a curve is fundamentally a one-dimensional

entity only. In addition, if the task does not need a specific ordering of points,

the image-based approach allows for capturing all possible input orders in a unified

way. An image represents a probabilistic coupler curve, where the intensity of a pixel

represents the likelihood of containing a coupler curve point. First, each coupler curve

is normalized with respect to scale, position, and orientation.

The normalized planar curve is now discretized into a 2D image. The two-

dimensional Cartesian space is linearly discretized into S − 1 partitions along each

axis, where S corresponds to a side of the image. The partitions along x-axis is done

as follows: x coordinates that lie between −∞ to −xlim are binned into a the first

partition. The next partition includes x ranging from (−xlim,−xlim + xstep], and

so on up to the last partition (Xlim,+∞). Here, xlim and xstep are discretization

parameters, which control the range and resolution respectively. Figure 5.2 depicts

the discretization of a normalized curve. It can be noted that the extreme coordinates
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Coupler Image

xmin xmax

ymax

ymin

Normalized

Figure 5.2: The extreme coordinates (xmin, xmax, ymin, ymax) of a normalized coupler
curve are shown. If a point lies in Cartesian span of pixel, it is given 1.0 probability.

play an important role in deciding resolution and range of pixels.

To estimate xlim, a statistical study is conducted on a dataset of 6,818 linkages

comprising of four-bar (2,188), Stephenson I (2,754) and Stephenson III (1,876) six-

bar linkages. The coupler curve for each linkage is stored as a sequence of points

sampled per one-degree change in the crank angle. The number of points in coupler

curves is different for different mechanisms. Figure 5.3 shows the histogram of extreme

coordinates corresponding to the normalized coupler curves from the database. It can

be seen that more than 99% of linkages are contained by a square with a side 7 and

center at the origin. Thus, xlim is set as 7/2 = 3.5. For an image with (S×S) pixels,

xstep is given by,

xstep =
2xlim
S − 1

.

Here, each pixel of an image represents a probability of containing at least one point

of the coupler curve. In this work, we choose S = 64, which provides sufficient

resolution to capture the variation in coupler curves. Figure 5.2 depicts the dis-

cretization of a normalized coupler curve into an image. It should be noted that the

discretization process causes some loss of information. However, in many cases, the

input is inherently vague. Thus, it acts as a buffer and prevents the further process

from over-emphasizing the numerical precision. One can also notice that image-based

representation removes the order of points in the curve. However, it grants spatial
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Figure 5.3: A histogram of extreme coordinates (xmin, xmax, ymin, ymax) of coupler
curves. It can be seen that less than 1% of the normalized coupler curves have a
point with an absolute coordinate larger than 3.5 units.
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Figure 5.4: Reconstruction and KL Divergence losses for two architectures with z
dimension 2 and 3. It can be seen that higher z-dimension enables capturing more
variation in the database, which results in lower reconstruction losses.

correlations between neighboring points, which helps in capturing interesting spatial

patterns.

5.4 VAE Training

Various datasets of linkages are used to train various architectures of VAE with

varying numbers of latent dimensional size. A new linkage is added to the dataset

if it is sufficiently dissimilar from all the linkages previously added to the dataset.

Here, the measure of dissimilarity between two linkages is given by a sum of L2 norms

between the normalized trajectories traced by all moving points of two linkages. Table

5.1 presents the details on various datasets used for training.

Figure 5.4 depicts training losses for two such architectures with latent dimen-

sion (i.e., the dimension of z vector) 2 and 3. As we can see in Fig. 5.4, the model

with a 3-dimensional z vector space achieves lower reconstruction error with slightly

higher KL divergence loss. This result is expected because with an increase in latent

size, the room to capture variation in the data increases. However, the increase in the

latent dimension also increases the complexity in visualization, interpretation, and

manipulation of latent attributes in recognition tasks. It is interesting to notice that

the two losses somewhat compete with each other in the training process. The re-

construction loss pushes the model to capture the diversity in the dataset, by forcing
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Figure 5.5: The training progress is reflected in the reconstruction quality of test
coupler curve images. The corresponding variational lower bound LX

i

ElBo is displayed
above each reconstructed image. It can be seen that the probability assignment by
VAE for each pixel improves over the training.

the generator to be able to reconstruct every type of data in the dataset. Whereas,

KL divergence forces the latent space to occupy a restrictive distribution and thereby

demanding coherence in the generation.

Figure 5.5 shows improvement in reconstructions of coupler image samples from

the test set as the training progresses. It can be seen that the pixels with a higher

probability of containing a coupler point are assigned a higher probability and vice

versa. Once the network is trained sufficiently, the encoder learns to capture spatial

correlations and returns a probability distribution in latent feature space. Each sam-

ple from this distribution has a high probability of being a valid coupler image. This

feature is used to obtain feasible representations of raw input and is demonstrated in

Section 5.7.

5.5 Recognition and Generation of Coupler Trajectories

For training or inference, each data point Xpath vector is passed through a recog-

nition model that computes the parameters for multivariate Gaussian distribution of

latent vector. In inference, the aim is to recognize the salient features of the input
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Table 5.1: Datasets used for Training VAE

Data Type Size
Four-bar Linkage (Grashof Only) 480

Four-bar Linkages 2188
Slider-Crank Linkages (Grashof Only) 466

Six-bar Stephenson IIIa Linkage (Grashof Only) 937
Six-bar Stephenson IIIa Linkage 3902

Figure 5.6: The raw user input X is passed through a recognition network, which
captures the salient information in the form of multivariate distribution of latent fea-
tures. Random samples from this distribution are fed to the generator to generate
paths with a high likelihood of producing good solutions. Moreover, users can ma-
nipulate the sample location in latent space, which gives them a low-dimensional and
higher level of control on modifying the shape of the path.
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point cloud. To showcase the inference functionality, let us consider two-point se-

quences that are obtained by manually drawing points on an interface. Each of the

sequences represents an approximate target path. Now we would like to infer their

salient features and generate plausible coupler paths having similar salient features.

We take a trained VAE with two-dimensional zpath vector vector trained on closed cou-

pler paths (VAE-z2-path). The two-point sequences, one at a time is passed through

a recognition network, which predicts a 2-D Gaussian distribution of latent features

for each of the input as shown in Fig. 5.6. Now for each case, random samples drawn

from the distribution are passed to the generator network of the VAE, it generates the

samples with closed paths that resemble the original input path as shown in Fig. 5.6.

5.6 Interactive Shape Modification with VAE

Let us assume a scenario where the user needs to specify a closed-loop target

path. Since the synthesis of linkages is chaotic, it is always fruitful to condition the

inputs such that the probability of finding good linkages is maximized. Moreover, it

is desirable to have a higher level of control on the overall shape of the target path.

We use VAE to accomplish both of the above tasks. First raw user input Xpath vector

is passed through recognition model as shown in Fig 5.6. The recognition model

captures the shape user intends to draw and returns it in the form latent feature

distribution q(z|X) as shown in Fig. 5.6. The VAE generator takes a sample feature

vector zs from q(z|X) and generates a path X̂. It should be noted that X̂ is a sample

from the distribution p(X|z) and has more probability of being a path drawn from

a four-bar. As we can see in Fig 5.6, generated paths follow the user-defined points,

but also resemble paths generated by Grashof four-bar linkages. Moreover, the user

can select or modify the zs interactively based on the variation of its corresponding

generated path. Hence, the user has a higher level control on the shape of the path

which improves the experience rather than modifying the input path point by point.
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This can be achieved by creating a user interface where the user can see the effects

of changing feature vector z in all possible directions. Figure 5.7 presents samples

created by the generator for different latent vectors. Here, the user can visualize

where the given curve lies, and change its shape by moving across the plane in 2-D.

This approach is amenable if the dimensionality of feature vector z is kept below 4].

5.6.1 Type Synthesis via Recognition

Several VAEs with different architectures are trained on the dataset that com-

prises of coupler paths, motions from four-bars, slider-cranks and Stephenson type

six-bars. Since the linkages above have a different topology, their coupler motions

should possess some features that are affected by it. Figure 5.8 depicts 2-D embed-

ding of closed coupler paths from Four-Bar (all revolute joints), Slider-Crank and

Stephenson six-bar mechanisms. It can be clearly seen that six-bar coupler curves

cover a wider variety in shape compared to four-bar linkages. Variety covered by

slider-crank linkages is the lowest and is mostly overlapped by a four-bar linkage.

The reasoning behind this observation can be given by the fact the slider-crank link-

ages are a special case of 4R linkages when the length of the rocker link and its fixed

pivot approach infinity. A classifier trained on such data can predict the probabilities

of a given task being fulfilled by the corresponding linkage type.

5.6.2 Example User-ML Interaction

In this section, we showcase the application of VAE to solve a path generation

problem using a motion generation problem solver. As we have stated earlier, the

ML Intermediary can take crude input from the user and provide all the necessary

information required by available solver with computational subtleties. These tasks

require VAE to capture primitive information provided by raw user input and generate

a set of plausible coupler motions. It is important to note that since the orientation

information required by the motion generation solver is not provided by the user, it
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(-2, 2) (2, 2) 

(-2, -2) (2, -2) 

Figure 5.7: Samples generated from a generator from a two-dimensional latent vector
which is a vertex in the two-dimensional uniform grid with limits shown in corners.
It can be seen that samples generated from neighboring vertices are highly corre-
lated, which gives away the indication that recognition network learns the salient
information about the shape of coupler curves.

Four-Bar

Six-Bar

Slider-Crank

Figure 5.8: Visualization of 2-D feature embedding obtained by training a VAE on
closed coupler paths of various planar linkages. The variety in features by means of
spread over the space directly relates to the variety in the shape of respective linkage
type.
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should be guessed by the ML Intermediary. This is done by using a C-VAE that

is trained to generate coupler motions Xmotion vector data given its path Xpath vector.

The architecture and training scheme for the C-VAE follows the discussion presented

in Chapter 4.6. We use our computational methods [1],[2] for solving the motion

generation problem in real-time. The solutions returned by the solver are fed to

the linkage recognition model of a VAE trained on entire four-bar linkages. This

linkage recognition model computes a compact feature representation of each linkage

on which we apply the K-means[80] clustering algorithm. The details of linkage

recognition and clustering are presented in section 5.11. It should be noted that

the feature distributions of linkages produced by a recognition model are in ten-

dimensional space. Thus, the depiction of the latent distribution of linkages and

following clusters as shown in Fig. 5.9 are only for illustration purposes. The cluster

centers are distinct solution concepts. Figure 5.9 depicts the entire procedure from

start to finish. The solutions obtained using the proposed approach yields diverse

mechanisms with various linkage topologies. To juxtapose our approach with classical

approaches, Fig. 5.9 also depicts the result obtained using a classical path synthesis

method [3] based on Fourier Descriptors. It can be seen that the classical result is

similar to one of the concept solutions obtained using variational synthesis.

5.7 Feasibility Conditioning and Input Feedback on Image-based Task

Raw user input is defined as an image with a different distribution of pixel

intensities than the ones the VAE has learned while training. If such an input im-

age is fed to VAE, the recognition network tries to find the learned patterns in the

input. The patterns with high correlation with learned patterns will receive a high

score that will be passed through max-pooling layers and eventually reflect in the

obtained latent distribution. If samples from that distribution are passed through

the generative model, it will produce coupler curve-like images that share similar
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Figure 5.9: C-VAE generates coupler motions corresponding to the path input. The
orientation information of generated motion is not shown for cleaner illustrations. The
generated motions are fed as inputs for the motion generation problem. The solutions
solved by [1] are passed through a linkage recognition model which results predicts
the latent distribution for each solution. This mixture of distributions is clustered to
form distinctive concept distributions. The four-bar linkage in the bottom left corner
depicts the optimal path synthesis solution using [3].
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spatial attributes. Figure 5.10 shows examples where VAE takes in raw inputs and

computes feasible inputs that are used for downstream tasks for path generation. It

can be seen that VAE shifts the probability assignments on the pixels of the raw in-

put. Figure 5.10 highlights this effect on various raw inputs. This is used to provide

feedback on the user input. Figure 5.11 depicts the outcome of VAE construction for

two different inputs. The input shown on the top can be closely approximated by a

four-bar mechanism, whereas the other input is highly unlikely for a four-bar or six-

bar to interpolate. Since the VAE is trained on coupler curves of four-bar and six-bar

linkages, it can reconstruct the original input with high accuracy. On the other hand,

second input is highly modified by VAE to change it into a more conducive input.

The difference between the modification done by VAE is reflected in the percentage

change in the histogram of pixel intensities. For the first image, almost 70% of the

pixels retain their original 100% intensity, whereas that number is a mere 17% for the

second input.

5.8 Latent Space Exploration

During training, VAE learns to encode X in a prior distribution which in our

case is a multivariate Gaussian. Latent vector z corresponding to X is distributed

such that the reconstructions G(z) share similar spatial features. Figure 5.12 presents

an example where a known coupler image Xpath image is passed through recognition

model of VAE with ten-dimensional latent space to obtain its mean latent embedding

zµ. Then the latent embedding is shifted along each axisymmetric direction and

the corresponding latent vector is reconstructed via generative model. It can be

seen in Fig. 5.12 that the neighboring reconstructions not only share similar spatial

features they smoothly morph into other feasible coupler images. This property can

be exploited to make higher-level changes to Xtask.
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DifferenceInput Image

Figure 5.10: Raw input image is passed through VAE which provides a feasible input
image. The shift in the probabilities is highlighted in the rightmost images. The shift
shown in dark indicates that the portion of raw input is highly unlikely for linkage
from the dataset to interpolate. This provides visual and intuitive feedback to the
user on the input.
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Figure 5.11: The raw input on the top is close to the true distribution of coupler
curves, thus VAE retains almost 70% of the highest intensities as depicted by the
histogram on the top. For the second input, VAE overrides user assignments on the
input pixels by a large number. This is due to the highly spiral nature of the input.
It can be also seen in Fig 5.10 that the inner portion of the input is highly penalized.

Figure 5.12: Latent exploration in axisymmetric directions is depicted. The original
latent vector z is translated in axisymmetric directions. The arrow towards δz1(+
indicates z is translated in positive direction along z1 axis in ten-dimensional space.
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5.8.1 Informed Latent Exploration

Latent space allows us to navigate on a manifold of feasible coupler curve images.

We can further exploit this by performing an informed exploration. Let us consider

an example where the objective is to design a re-configurable linkage that satisfies

a family of coupler curves. This family of coupler curves can be represented by a

curve in latent space. VAE can be used to find a family of curves that morph from

one curve to another by interpolation between the two latent curves. Figure 5.13

show a few examples of such interpolations. Although it should be noted that not all

possible curves in latent space may correspond to feasible families of coupler curves.

This is due to the possibility that the latent space may contain some void spaces as

depicted by Fig 5.14. This happens if certain data samples are drastically different

from others.

5.9 Context Conditioning

Until now, we have seen that the latent space z of a VAE trained on real

data X can be used to reconstruct samples X̂ that have a high similarity to X. This

section presents a strategy to explore the latent space in a more effectively to generate

a samples X̂context that maximize a fitness function fcontext(X). The algorithm for

context conditioning is given in Algorithm 3,

It can be argued that if there exist a continuous function fcontext(X) then one can

simple perform the search of X that maximizes fcontext(X). However, the distribution

of real X data is non-continuous and occupies a much smaller dimension in its high

dimensional domain. Thus, a direct optimization w.r.t. X can get lost into large

infeasible regions of X. In addition, searching in ow dimensional z space is more

efficient and the results are more semantically similar X to the original task Xtask. It

should be noted that the objective is not to cause significant changes to the original

task Xtask.
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1)

2)

3)

Figure 5.13: Examples of linear and spherical interpolation between a pair of known
coupler images. G(zl)) and G(zs)) denote reconstructions for linear and spherical
interpolations respectively. It can seen that in some cases, the interpolation passes
through infeasible region indicated by higher LELBO.
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Figure 5.14: Illustration of gaps in latent spaces that lead to higher reconstruction
errors if a sample is drawn from those regions. Two interpolation strategies are shown,
one of which passes through the infeasible region.

Algorithm 3: Contextual Latent Exploration

Input : Xtask, f(X) = fcontext(X)
Output: X̂context

1 µ, σ = Q(Xtask)(Input); . task recognition
2 zinit = N (µ, σ) . Initial starting point
3 z = zinit

4
δf(X̂)
δz

= δf(X̂)

δX̂

δX̂
δz

= δf(X̂)

δX̂

δG(z)
δz

. δf(X̂)

δX̂
and δG(z)

δz
are analytically known

5 Maximize f(X) w.r.t. z . Using Stochastic Backpropagation

6 using gradients δf(X̂)
δz

7 Subject to,
8 ||znew − zinit|| < ZThreshold,
9 LELBO(G(z)) < ELBOThreshold . Suitable thresholds should be chosen

10 return G(z)
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5.9.1 Context as Desired Fixed Pivot Regions

In the case of one degree-of-freedom linkages, there exists a definite relationship

between fixed pivots and the coupler curve of the linkage. In the case of four-bar

linkage, three linkages exist that can trace the exact same curve. The set of such

linkages are called cognates. The number of cognates can be different for different

topologies.

In this case, we use the data-driven approach to learn the relationship between

coupler curves and the corresponding fixed pivot locations by training a neural net-

work. Instead of training a regression model that predicts the exact fixed pivot loca-

tions, we train a set of classifier models that predicts the probability of a discretized

region containing a fixed pivot. This is shown in Fig. 5.15.

The 2D space for fixed pivot prediction is discretized into k× k pixels, where k

is the number of divisions along x or y axis. Here we take k = 7. The objective for

classifier (FP ) is to learn a set of functions FPi,j(X64×64)
i=7,j=7
i=1,j=1, where each function

FPi,j predicts the probability of the region covered by pixel at i, j. Since one coupler

curve can be traced by many linkages (three for four-bar), FP (X) should predict

multiple possibilities in terms of a probability distribution.

For i = 7, j = 7, f comprises of total 49 functions. For the input X shown above,

it should predict at least two possibilities. The below figure displays the expected

output for X. A classifier is trained that predicts a probability for each of the 49

pixels. Figure 5.16 presents classification result of a sample input.

We use this classifier as the context function to make small informed changes

in a task image depicted in Fig. 5.17. FPtarget(X) in Fig. 5.17 depicts a binary mask.

This mask is multiplied with the output of the classifier. Summation of the above

product is treated as the fitness function in context conditioning given by,

fcontext(X) =

i=7,j=7∑
i=1,j=1

FP (X) · FPtarget(X) (5.9)

Then the procedure presented in Algorithm 3 is followed. This procedure con-
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Figure 5.15: The fixed pivots for the linkage are transformed according to the nor-
malization of the coupler curve. The location of each fixed pivot is discretized to
create a one-hot vector of 49 dimensions, depicted in an image form.

Figure 5.16: Classifier predicts a probability for each of the 49 pixels. The probability
indicates the likelihood that the region spanned by that pixel contains a fixed pivot.
The pixels where the fixed pivot lie are given a significantly high probability than the
rest of the pixels.
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Figure 5.17: The approach start with a linkage with coupler curve image X and
fixed pivots at FPtrue(X). A trained classifier FPNN(X) accurately predicts the true
location of fixed pivots. The X is reconstructed using a trained generative model
which will be used in context conditioning. The image titled FPtarget(X) highlights
a portion of classifier which will be subjected to maximization in the optimization
routine given in Algorithm 3.

Steps

Figure 5.18: Value of objective function over 100 steps of gradient based stochastic
optimization.
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Desired

Fixed Pivot

Region

Initial Input

Conditioned

Input

Figure 5.19: Initial and final coupler curve images with their corresponding fixed
pivot region predictions. It can be seen that only subtle changes in the coupler curve
are needed to satisfy the desired fixed pivot predictions.
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ducts an informed exploration in the latent space that maximizes the fitness function.

Figure 5.18 depicts the increase in value of objective function as the optimization

progress. Figure 5.19 depicts the initial and final coupler curve images. It can be

seen that only subtle changes in the coupler curve are needed to satisfy the desired

fixed pivot predictions. It should be noted that the output of context conditioning

is not guaranteed to produce the solutions with fixed pivots lie in the desired region.

However, it is an input that has a higher probability (indicated by trained classifier)

of finding solutions with fixed pivots in the prescribed regions. In this work, we have

developed a synthesis algorithm that provides theoretical guarantees to satisfy such

practical constraints in the case of motion generation for four-bar linkage. The ap-

proach presented in this section, however, is more versatile and can incorporate any

data-driven context and is invariant to linkage topology.

5.10 Nearest Latent Neighbors for Variational Path Synthesis

In Section 5.7, it was shown that the recognition network captures the spatial

correlations that highly correspond to that of coupler curve images. To take advan-

tage of this fact, the database is remapped into a 50-dimensional space where each

mechanism is represented by the latent vector obtained using the recognition model.

At the time of synthesis, raw input is passed through the recognition model to find a

distribution of possible latent vectors. K-Nearest neighbors to the mean of this distri-

bution are returned as potential solutions. Figure 5.20 presents some of the solutions

obtained for the nearest neighbor query on raw user input.

5.11 Linkage Clustering

Consider a set ofM linkages represented by set of vectors, {Xlinkagei}
M
i=1. Now, it

is useful to find K representative linkages that cover the variety of obtained solutions,

where K is a user-selected parameter. To find such K representative linkages, we
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Figure 5.20: The linkages corresponding to the K nearest neighbor in latent space
for the given raw input are depicted. It can be seen that the linkages exhibit a wide
variety in terms of their coupler path; thereby capturing input uncertainty.

perform K-means[80] Clustering on the set of M linkages, where K << M . Before

performing clustering, we first pass the set through recognition module to obtain a

compressed representation for the set {(µlinkagei , σlinkagei)}Mi=1 given by,

µlinkagei , σlinkagei = Qlinkage(Xlinkagei ; θe). (5.10)

Where Qlinkage is the recognition model of the VAE trained on the corresponding

linkage dataset.

Now, for computing the pairwise distance between two linkages Xlinkagei and

Xlinkagej , we take the L2-norm between their corresponding mean latent vectors µi

and µj. Using the L2-norm on latent representations instead of L2-norm on the

original vectors has shown to yield better clustering for high dimensional data[69].

This results in the identification of K clusters and along with the corresponding

cluster centers. Figure 1.5 shows cluster centers for the recognition and clustering

task for a set of 100 four-bar linkages with K = 4.
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Chapter 6

Conditional Generation of Linkages

6.1 Introduction

In this chapter we present an alternate End-to-End deep neural network ar-

chitecture for Variational Synthesis of linkages. This End-to-End architecture is a

Conditional-VAE (C-VAE), which approximates the conditional distribution of link-

age parameters with respect to coupler trajectory distribution. The outcome is a

probability distribution of kinematic linkages for an unknown coupler path or mo-

tion. This framework functions as a bridge between the current state of the art

theoretical and computational kinematic methods and machine learning to enable

designers to create practical mechanism design solutions.

This chapter presents a generative way of learning End-to-End synthesis for

planar linkages using C-VAE. A case study of End-to-End Variational Synthesis using

pure Deep Learning is presented in Section 6.3.1.

6.2 Conditional Variational Auto Encoders (C-VAE)

C-Variational Auto Encoders (C-VAE) [72] is a neural network architecture

that learns to approximate conditional distribution of an observed data X given an

observed property Y . Figure 6.1 shows a general architecture of a C-VAE. In this

figure, X and Y are concatenated and fed to Recognition Model as the input. There

are two hidden layers h1 and h2 in the Recognition Model, while the Generative

Model has one hidden layer h3. In the middle, there is feature space encoded by the



Figure 6.1: Recognition Model encodes the observed data X and observed property Y
into probabilistic latent coding z of dimension much smaller than X. In this case, we
assume a multivariate Gaussian distribution for z. Generative Model takes samples
from this distribution and combines it with Y to generate output X̂

variable z, which seeks to capture the salient features of the input data in a compact

latent space. Given observed variables X and Y , Recognition Model computes a

approximate probability distribution q(z|X, Y ) of the latent variable z as following:

µ, σ = Q(X, Y ; θe), (6.1)

q(z|X) = N (µ, σ). (6.2)

Here, N (µ, σ) is a multivariate Gaussian distribution function with mean µ and vari-

ance σ. The generative model is a function which is trained to maximize likelihood

samples X̂ by taking a sample from z ∈ q(z|X, Y ) and concatenating it with Y . Thus,

X is given by,

X̂ = G(z, Y ; θg), (6.3)

In this paper, we assume the prior probability distribution of p(z) as a multivariate

Gaussian with mean 0 and unit variance. The training task is to find parameters θg, θe

of G(z) and Q(X), respectively that maximize an objective, which is a combination

of generating maximum likelihood samples and obtaining posterior distribution of z

(i.e., q(z|X, Y )) close to the true distribution p(z). This is achieved by training the

neural network models for minimizing the loss given by,

L = (X̂ −X)2 +

zdim∑
j

KL(qj(z|X, Y )||p(z)) (6.4)

109



Here, the first term represents reconstruction likelihood and the second term is called

Kullback-Leibler divergence (KL divergence) [78] which is the measure of divergence

in between the learned distribution q(z|X, Y ) and true prior distribution p(z). Note

that zdim is the dimension of latent space. KL divergence, when p(z) is a Gaussian

distribution with zero mean and unit variance, is given by,

KL =

zdim∑
i

σi
2 + µi

2 − log(σi)− 1, (6.5)

where µ and σ are given by eq. (6.2); for further details please see [72]. The recon-

struction likelihood imposes a penalty for not being able to reconstruct the original

data, while the KL divergence term penalizes creation of an excessive number of

clusters in the feature space.

Once the entire C-VAE is trained, the generative model can be used separately

to perform kinematic synthesis. Parameters of this neural network are learned to map

a concatenating vector comprising of latent space and label Y to a reconstruction,

which would exhibit similar latent attributes z if passed through the recognition net-

work. The architecture of this model starts with an input layer which receives the

concatenated vector and passes through single or multiple layers of neurons culminat-

ing into the original size of the observed data. The middle layers are fully connected

layers which upscale the input they receive from the previous layer. We apply Leaky

ReLU activation function [81] on the output of each hidden layer. Leaky ReLu is

given by,

ReLU(x) = max(αx, x), (6.6)

where α is a small constant, which we take to be 0.001 based on common machine

learning practice.

6.2.1 State of the linkage

C-VAE discussed in section 4.6 requires a tuple (X, Y ) to train, where X is

an observed variable (in this case the entire linkage) and Y is an observed property
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or condition (in this case the coupler curve). In theory, this formulation should

work for any such tuple which has a strong correlation. We note that simply using

the dimensional parameters of the mechanism, which describe link length and the

fixed pivot locations of a mechanism would not be a suitable choice for the vector

X as they would merely describe a set of unrelated and discrete parameters with no

possible meaning associated with them. This demonstrates that divorcing kinematic

knowledge from the ML will not give us meaningful answers. Instead, we formulate

the observed variable X from the linkage parameters such that it should contain the

information of the entire simulation of linkage in its current configuration. First, we

orient and scale a linkage such that one of its fixed links has magnitude 1 and is

parallel to the Cartesian x-axis. We uniformly sample locations of all the points of

interest for m crank orientations sampled uniformly throughout the possible range.

Next, we represent these locations in polar coordinates with origin at fixed pivot

corresponding to the crank. Then, these coordinates are stacked together for all of

the m orientations. In the case of four-bar linkage, we have three points of interest

P1, P2, P3 as shown in Fig. 6.2. Thus, the state tensor for four-bar linkage is given by,

Xstate = {rP1, θP1, rP2, θP2, rP3, θP3}mi=1, (6.7)

where rPj and θPj are the radial and angular coordinates of point Pj.

We flatten this tensor to form a 600-dimensional vector Xfourbar. The dimension

of state vector Xlinkage of linkage is equal to 2×m× PoI, where PoI is the number

of points of interest for that linkage.

In the case of a Stephenson six-bar linkage, we have six points of interest

P1, P2, P3, P4, P5, P6 as shown in Fig. 6.3. Thus, the state tensor X is given by,

X = {rP1, θP1, rP2, θP2, rP3, θP3, rP4, θP4, rP5, θP5, rP6, θP6}mi=1, (6.8)

where rPj and θPj are the radial and angular coordinates of point Pj. It should be

noted that a tuple (X = {rP1, θP1, rP2, θP2, rP3, θP3, rP4, θP4, rP5, θP5, rP6, θP6}mi=1, )
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P1

P3

P2

Figure 6.2: A four-bar linkage with the fixed link of unit magnitude and co-linear
with X-axis. The polar coordinates of points P1, P2, and P3 stacked together for m
crank orientations constitute the state representation of the four-bar.

P1

P3

P2
P4

P5

P6

Figure 6.3: A Stephenson six-bar linkage with the fixed link of unit magnitude and
co-linear with X-axis. The polar coordinates of points {Pi}6i=1 stacked together for
m crank orientations constitute the state representation of the six-bar
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Table 6.1: VAE and C-VAE Models : Architectures (FB=Four-bar, SC=Slider-Crank,
SB=Six-Bar)

(X) X Dim Name Enc Arch. (z) dim Dec Arch. Y
FB M. 300 C-VAE-M3 (30) 3 (30) 6 Pts on P.

FB, SC, SB M. 300 C-VAE-M3 (30) 3 (30) 10 Pts on P.
FB Linkages 600 C-VAE-LF10 (300, 100) 10 (100, 300) P.
SB Linkages 1200 C-VAE-LS15 (600, 300) 15 (300, 600) P.

for any of the orientations can be used to construct the original mechanism back. X

has dimensions [m, 2×PoI], where PoI is the number of points of interest, whereas,

Y is taken as the corresponding coupler path, which has dimension 2m.

6.2.2 Training C-VAE for Mechanism Synthesis

We flatten X and Y to form vectors of dimensions m × 2PoI and 2m, respec-

tively. In order to train C-VAE, we pass a batch of X and Y to the network and

compute gradients and losses. The training losses of C-VAE for four-bar and six-bar

mechanisms are depicted in Fig. 6.4. It can be seen in the Fig. 6.4 that C-VAE for

four-bar takes lesser time to train with better training accuracy. This observation is

supported by the fact the six-bar linkages have higher complexities in the distributions

of the parameters.

The model architectures and their training results are tabulated in Tables 6.1

and 6.2 respectively. In Table 6.1 where P. and M. signify path and motion, respec-

tively. This Table also shows the details of each architecture, such as the number of

neurons in each layer, the number of hidden layers.

Table 6.2: VAE and C-VAE Models : Training Losses

Name Rec Loss KL Loss
C-VAE-M3 7.21 2.32
C-VAE-M3 10.13 3.42

C-VAE-LF10 11.04 13.20
C-VAE-LS15 13.02 17.34
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Figure 6.4: Reconstruction and KL Divergence losses for C-VAE-FB and C-VAE-SB.
The architectural details of these models are given in Table 6.1.
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6.3 End to End Variational Synthesis of Planar Linkages

C-VAE is trained to map the probability distribution of linkages to the shape of

their corresponding coupler paths. C-VAE-10 takes a 200-dimensional vector Y and

a sample from Gaussian distribution as an input and returns 600-dimensional vector

X̂linkage as output. From this 600 dimensional vector, we take the average location of

each point of interest and construct the mechanism. This ensures that each generated

sample results in a valid linkage. There is no guarantee that generated linkage should

resemble the path Y , but C-VAE is trained to maximize that likelihood. Figures 6.5

and 6.6 depict some examples generated by C-VAE when a unseen coupler curve is

passed as Y along with a multivariate Gaussian with zero mean and unit variance

as z in Eq. (6.3). It is interesting to see the variations in the linkage parameters

generated by C-VAE.

Combining this model with VAE for coupler trajectory can yield useful planar

linkages with variations, making it an End-to-End deep learning model for the vari-

ational synthesis of planar linkages. Further investigation is necessary to make an

accurate comparison of this End-to-End deep learning model with classical methods.

6.3.1 Case Study

Now, we use this trained model to generate conceptual designs for the prescribed

gait rehabilitation path. C-VAE generates a conditional distribution of linkages for a

given path. A hundred samples from this distribution were taken out of which forty of

the samples possessed similar coupler curves as the task curve. From those samples,

eleven linkages were selected by visual inspection and displayed in Fig. 6.7 along with

the prescribed path Y .

It should be noted that by avoiding to formulate the problem as minimizing the

fitting error between the task path and the coupler curve of the mechanisms, we are

able to generate a multitude of mechanisms with desired structure. Figure 6.8 shows
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Figure 6.5: Sample linkages generated by C-VAE-LF10 when it is supplied with the
conditional coupler curve Y and 10 dimensional Gaussian multivariate z. Architecture
of this C-VAE is presented in Table 6.1.
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Figure 6.6: Stephenson Six-bars generated by C-VAE-LS15 (see Table 6.1) condi-
tioned for coupler curve Y and 15 dimensional Gaussian multivariate z.
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Path (Y) (X = G(z, Y))Generated Six-Bars ^

Figure 6.7: Stephenson Six-bars generated by C-VAE-LS15 (see Table 6.1) condi-
tioned for coupler curve Y and 15 dimensional Gaussian multivariate z. The mecha-
nisms having pivots in desired region are selected for the next step

117



Figure 6.8: Collection of Feasible Six-Bar Mechanisms with desirable properties. It
can be seen that their fixed pivots are in the desired shaded region
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Predicted Path Design 1 Design 2

Figure 6.9: Final Linkage Concept Solutions

a few such feasible mechanisms. It can be seen that some of these mechanisms may

have a worse fitting to the task path, but are better suited for this application as

their fix pivots lie inside the desired region. Here, the number of solutions obtained

is only limited by the sampling of the latent space; however, not every sample would

produce a unique or useful linkage.

The concepts obtained in Fig. 6.8 can be further fine-tuned in detailed design

phase. Along with Six-bars, C-VAE-FB model (see Table 6.1) was also used to find

out the suitable four-bar linkages. The Fig. 6.9 shows one chosen solution concept

along with an additional 2R link, which resembles the thigh and lower leg of the

person. It can be seen that fixed pivots and link ratios have appropriate proportions

with respect to the lower limb of the person. Using the C-VAE approach, we are able

to generate a large sample of mechanisms that can satisfy the design requirement.

119



Chapter 7

Conclusion

The primary contribution of the dissertation is in the development of a data-

driven computational framework that combines deep generative models with mech-

anism synthesis algorithms. Deep learning was used to learn the meaningful rep-

resentations of linkage parameters and used in a novel way to enhance the users’

design experience. This approach derives from the existing kinematic knowledge to

create a new framework for mechanism synthesis, which solves problems that have

had no good theoretical underpinning, such as defect-free generation, conditioning of

the input, and contextual concept generation.

This is achieved by learning the probability distribution of various linkage pa-

rameters and their interdependence to perform useful inference tasks. The inference

capabilities of the generative model are used to intelligently modify the synthesis

task to enhance the prolificacy and robustness of precision-point based synthesis algo-

rithms. We define this approach, where the input uncertainty is intelligently managed

to generate a distribution of solutions, as Variational Synthesis of Mechanisms

In addition to the general framework, this paper also presents a novel image-

based approach for path generation, which is particularly amenable to mechanism

synthesis when the input from mechanism designers is deliberately imprecise or in-

herently uncertain due to the nature of the problem. It models the input curve as a

probability distribution of image pixels and employs a probabilistic generative model

to capture the inherent uncertainty in the input. In addition, it gives feedback on the



input quality and provides corrections for a more conducive input. The image rep-

resentation allows for capturing local spatial correlations, which plays an important

role in finding a variety of solutions with similar semantics as the input curve. The

purpose is to obtain a diverse set of acceptable solutions instead of finding a single

optimal solution for an inherently uncertain input.

The approach is independent of linkage topology. The approach is general

enough to be extended to spatial linkages for which there are even fewer synthe-

sis methods available. In addition, an alternate synthesis approach using End-to-End

deep learning models is presented which captures the conditional distribution of link-

age parameters and the task.
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